|
b) Ta có $ \frac{\sin2x}{\sin^{2}x + 2\cos^{2}x}= \frac{\sin2x}{1+\cos^{2}x}= -\frac{(1+\cos^2x)'}{1+\cos^{2}x}$ Suy ra $\int\limits_{0}^{\pi/4} \frac{\sin2x}{1+\cos^{2}x}dx=\int\limits_{0}^{\pi/4} -\frac{(1+\cos^2x)'}{1+\cos^{2}x}dx=\left[ {-\ln(1+\cos^{2}x)} \right]_{0}^{\pi/4}=\ln\frac{4}{3}$
|