|
|
Ta có $e^{\sin ^{2}x} \sin 4x$ $=e^{\sin ^{2}x} (2\sin 2x\cos 2x)$ $=-2e^{\sin ^{2}x} (2\sin 2x) + (\cos 2x +2)e^{\sin ^{2}x} (2\sin 2x)$ $=e^{\sin ^{2}x} (\cos 2x +2)' + (\cos 2x +2)(e^{\sin ^{2}x} )'$ $=(e^{\sin ^{2}x} (\cos 2x +2))' $
Vậy $ \int\limits_{0}^{\frac{\pi}{2}} e^{\sin ^{2}x} \sin 4xdx =\left[ {e^{\sin ^{2}x} (\cos 2x +2)} \right]_{0}^{\frac{\pi}{2}}=\boxed{2(e-3)}$
|