|
Trước hết bạn chứng minh bằng quy nạp hệ thức sau 1+3+\cdots+(2n-1) = \sum_{k=1}^n(2k-1)=n^2 Ta có \mathop {\lim }\limits_{n \to \infty }(\frac{1+3+5+...+2n-1}{n+1}-\frac{2n+1}{2})=\mathop {\lim }\limits_{n \to \infty }(\frac{n^2}{n+1}-\frac{2n+1}{2})=\mathop {\lim }\limits_{n \to \infty }(\frac{n^2}{n+1}-\frac{2n+1}{2}) =\mathop {\lim }\limits_{n \to \infty }-\frac{3n+1}{2n+2}=-\frac{3}{2}
|