|
c/ $S_{OMN}$=16 => OM.ON=32 => a.b=32 => b=32/a => M(a,0), N(0, 32/a) => $\overrightarrow{MN}$( -a, 32/a) => MN= $\sqrt{a^{2}+(32/a)^{2}}$ MN: 32/a. (x-2)+ a. (y-4)=0 Khi đó: d(O, MN)= $\frac{\frac{-64}{a}-4a}{\sqrt{(32/a)^{2}+a^{2}}}$ => $S_{OMN}$= 1/2. d(O, MN). MN= $\frac{-32}{a}$ - 2a = 16 => a=-4, b=-8 => $\overrightarrow{MN}$=(4,-8)= (1,-2) => MN:2x+y+8=0
|