|
$\log_{5x+9}(x^{2}+6x+9)+\log_{x+3}(5x^{2}+24x+27) = 4 $ $2\log_{5x+9}{(x+3)}+\log_{x+3}{(5x+9)(x+3)}=4$ $2\frac{\log {(x+3)}}{\log {(5x+9)}}+\frac{\log {(5x+9)(x+3)}}{\log {(x+3)}}=4$ $2\frac{\log(x+3)}{\log (5x+9)}+\frac{\log(5x+9)+\log (x+3)}{\log (x+3)} =4$ $2\frac{\log (x+3}{\log (5x+9)}+\frac{\log (5x+9)}{\log (x+3)}+1 =4$ Đặt $a=\frac{\log {(x+3)}}{\log {(5x+9)}}$. Suy ra, $2a+\frac{1}{a}=3\Leftrightarrow 2a^2-3a+1=0\Leftrightarrow (2a-1)(a-1)=0$ và $a=\frac{1}{2}$ hoặc $a=1$.
Nếu $a=\frac{1}{2}$, thì $\frac{\log {(x+3)}}{\log {(5x+9)}}=\frac{1}{2}$. $2\log {(x+3)}=\log {(5x+9)}$ $\log {(x^2+6x+9)}=\log {(5x+9)}$ $x^2+6x+9=5x+9$ $x^2+x=0$ $x=-1$ và $x=0$
Nếu $a=1$, thì $\frac{\log {(x+3)}}{\log {(5x+9)}}=1$. $\log {(x+3)}=\log {(5x+9)}$ $x+3=5x+9$ $x=-\frac{3}{2}$ Vậy $\boxed{x=-1}$, $\boxed{x=0}$, $\boxed{x=-\frac{3}{2}}$
|