|
Bạn đã thử cố gắng giải nó chưa.. Ta có : $\cos (\pi +x)=\cos ((x-\pi)+2\pi)=\cos (x-\pi)=\cos (\pi -x )=-\cos x$ $\sin(\frac{3\pi+x}{2} )=\sin (\frac{x}{2}-\frac{\pi}{2}+2\pi)=\sin (\frac{x}{2}-\frac{\pi}{2})=-\sin (\frac{\pi}{2}-\frac{x}{2})=-\cos \frac{x}{2}$ Như vậy PT $\Leftrightarrow 1+\cos x+\cos \frac{x}{2}=0 (*)$ Bây giờ chú ý rằng $ \cos x=2\cos^2 \frac{x}{2}-1$. PT $(*)\Leftrightarrow 2\cos^2 \frac{x}{2}+\cos \frac{x}{2}=0\Leftrightarrow \cos \frac{x}{2}\left (2\cos \frac{x}{2}+1\right )=0$ $\Leftrightarrow \left[ {\begin{matrix} \cos \frac{x}{2}=0\\ \cos \frac{x}{2}=-\frac{1}{2} \end{matrix}} \right.$$\Leftrightarrow \left[ {\begin{matrix} x=\pi + 2k\pi\\ x=\pm \frac{4\pi}{3}+4k\pi \end{matrix}} \right. (k \in \mathbb{Z}).$
|