(S): x^2+y^2+z^2=1 có tâm O(0;0;0) ;R=1Gọi B(0;b;0)=(P)\cap Oy C(0;0;c)=(P)\cap Oz (b;c>0)=>(P): \frac{x}{\sqrt2} + \frac{y}{b} +\frac{z}{c}=1hay xbc+\sqrt2cy+\sqrt2bz-\sqrt2bc=0(P) tiếp xúc với (S)\Rightarrow |\sqrt2bc|=\sqrt{(bc)^2+2(b^2+c^2)} (1)\overrightarrow{AB}(-\sqrt2;b;0) \overrightarrow{AC}(-\sqrt2;0;c)\Rightarrow |[\overrightarrow{AB},\overrightarrow{AC}]|=|bc+\sqrt2c+\sqrt2b|=4\sqrt2 (2)Từ (1) (2)\begin{cases}b+c= \\ bc= \end{cases}
(S): x^2+y^2+z^2=1 có tâm O(0;0;0) ;R=1Gọi B(0;b;0)=(P)\cap Oy C(0;0;c)=(P)\cap Oz (b;c>0)=>(P): \frac{x}{\sqrt2} + \frac{y}{b} +\frac{z}{c}=1hay xbc+\sqrt2cy+\sqrt2bz-\sqrt2bc=0(P) tiếp xúc với (S)\Rightarrow |\sqrt2bc|=\sqrt{(bc)^2+2(b^2+c^2)} (1)\overrightarrow{AB}(-\sqrt2;b;0) \overrightarrow{AC}(-\sqrt2;0;c)\Rightarrow |[\overrightarrow{AB},\overrightarrow{AC}]|=|bc+\sqrt2c+\sqrt2b|=4\sqrt2 (2)Từ $(1) (2)\begin{cases}b+c=2\sqrt2 \\ bc=2 \end{cases}\begin{cases}b=\sqrt2 \\ c=\sqrt2 \end{cases}$