|
giải đáp
|
tổ hợp về chọn số
|
|
|
1) Các chữ số 1,2,3,4,5 đứng cạnh nhau theo thứ tự tăng dần ta có 1 cách chọn. Ta coi bộ số này là 1 chữ số Kết hợp với 4 chữ số còn lại ta được 5 chữ số Vậy có 5! =120 số
|
|
|
được thưởng
|
Đăng nhập hàng ngày 23/10/2014
|
|
|
|
|
|
được thưởng
|
Đăng nhập hàng ngày 21/10/2014
|
|
|
|
|
|
được thưởng
|
Đăng nhập hàng ngày 20/10/2014
|
|
|
|
|
|
|
giải đáp
|
Mọi người giúp mình với đang cần gấp
|
|
|
Bài 1: a) Có 3y chia hết cho 3; 50 chia 3 dư 2; 13 chia 3 dư 1 $\Rightarrow $ x chia 3 dư 2 $\Rightarrow $ x=2 $\Rightarrow $ y=8 b) Có 21x chia hết cho 7; 280 chia hết cho 7; 31 không chia hết cho 7 $\Rightarrow $ x chia hết cho 7 $\Rightarrow $ x=7 $\Rightarrow $ y=3
|
|
|
được thưởng
|
Đăng nhập hàng ngày 16/10/2014
|
|
|
|
|
|
|
được thưởng
|
Đăng nhập hàng ngày 14/10/2014
|
|
|
|
|
|
được thưởng
|
Đăng nhập hàng ngày 13/10/2014
|
|
|
|
|
|
giải đáp
|
Mọi người giúp em nha
|
|
|
Giả sử tồn tại 2000 số nguyên lẻ tm đẳng thức trên Do các số nguyên đó lẻ $\Rightarrow $ bình phương của chúng chia 4 dư 1 $\Rightarrow $ tổng bình phương 1999 số nguyên chia 4 dư 3 không thể là số chính phương $\Rightarrow $ Giả sử sai $\Rightarrow$ đpcm
|
|
|
được thưởng
|
Đăng nhập hàng ngày 12/10/2014
|
|
|
|
|
|
|
giải đáp
|
giai giup voi
|
|
|
Gọi n+1=$x^2$; 2n+1=$y^2$ Có 2n+1 là số chính phương lẻ $\Rightarrow $ nó chia 4 dư 1 $\Rightarrow $ n chẵn $\Rightarrow $ n+1 và 2n+1 là hai số chính phương lẻ $\Rightarrow $ x; y lẻ $\Rightarrow $ x+y; y-x có chắc chắn 1 số chia hết cho 2 và 1 số chia hết cho 4 $\Rightarrow $ $y^2-x^2$ chia hết cho 8 hay n chia hết cho 8 (1) Do n+1 là số chính phương nên khi chia nó cho 3 chỉ có thể dư 0 hoặc 1. Nếu n+1 chia hết cho 3 thì n chia 3 dư 2 $\Rightarrow $ 2n+1 chia 3 dư 2 không thể là số chính phương $\Rightarrow $ n+1 chia 3 dư 1 $\Rightarrow $ n chia hết cho 3 (2) Từ (1) và (2) kết hợp với ƯCLN(8;3)=1 $\Rightarrow $ n chia hết cho 24 (đpcm)
|
|
|