Câu 1/ +→PA=k→PD⇔→PD+→DA=k→PD⇔→DA=(k−1)→PD⇒→AD=(k−1)→DP Tương tự →BC=(k−1)→CQ⇒→BC=(1−k)→QC (1) +→AB=→AP+→PQ+→QB Tương tự →DC=→DP+→PQ+→QC⇒→AB−→DC=→AP+→PD+→QB+→CQ=→AD+→CB (2)+ →PQ=→PD+→DC+→CQ →PQ=→PA+→AB+→BQ⇒2→PQ=→PD+→DC+→CQ+→PA+→AB+→BQ (3)+ →PD+→CQ+→PA+→BQ=→PD+k→PD−(→QC+k→QC) =(k+1)→PD−(k+1)→QC (4)(1)(2)(4)⇒(4)=k+11−k→PD+k+11−k→CB=k+11−k(→AB−→DC) (5)Từ (3)(5) => 2→PQ=k+11−k(→AB−→DC)+→AB+→DC=→PQ=11−k(→AB+→DC)
Câu 1/a/+→PA=k→PD⇔→PD+→DA=k→PD⇔→DA=(k−1)→PD⇒→AD=(k−1)→DP Tương tự →BC=(k−1)→CQ⇒→BC=(1−k)→QC (1) +→AB=→AP+→PQ+→QB Tương tự →DC=→DP+→PQ+→QC⇒→AB−→DC=→AP+→PD+→QB+→CQ=→AD+→CB (2)+ →PQ=→PD+→DC+→CQ →PQ=→PA+→AB+→BQ⇒2→PQ=→PD+→DC+→CQ+→PA+→AB+→BQ (3)+ →PD+→CQ+→PA+→BQ=→PD+k→PD−(→QC+k→QC) =(k+1)→PD−(k+1)→QC (4)(1)(2)(4)⇒(4)=k+11−k→PD+k+11−k→CB=k+11−k(→AB−→DC) (5)Từ (3)(5) => 2→PQ=k+11−k(→AB−→DC)+→AB+→DC=→PQ=11−k(→AB+→DC) b/Cho I thuộc BD s/c : →IB=k→ID Ta có →PA→IB=→PD→ID⇒→PI//→AB ⇒→AB//(PQI)⇒→AB//→PQ => →PQ// mp chứa →AB