SỬ DỤNG CÔNG CỤ ĐẠO HÀM TRONG GIẢI TOÁN TỔ HỢP


I. PHƯƠNG PHÁP

Bắt đầu từ những khai triển Newton:
a) ${\left( {1 + x} \right)^n} = C_n^0 + C_n^1x + C_n^2{x^2} + ... + C_n^n{x^n}$
$\begin{array}
   \Rightarrow {\left[ {{{\left( {1 + x} \right)}^n}} \right]^\prime } = {\left[ {C_n^0 + C_n^1x + C_n^2{x^2} + ... + C_n^n{x^n}} \right]^\prime }  \\
   \Rightarrow n{\left( {1 + x} \right)^{n - 1}} = C_n^1 + C_n^2.2x + ... + C_n^n.n{x^{n - 1}}  \\
\end{array} $

b) ${\left( {1 - x} \right)^n} = C_n^0 - C_n^1x + C_n^2{x^2} - ... + {\left( { - 1} \right)^n}C_n^n{x^n}$
$\begin{array}
   \Rightarrow {\left[ {{{\left( {1 - x} \right)}^n}} \right]^\prime } = {\left[ {C_n^0 - C_n^1x + C_n^2{x^2} - ... + {{\left( { - 1} \right)}^n}C_n^n{x^n}} \right]^\prime }  \\
   \Rightarrow  - n{\left( {1 - x} \right)^{n - 1}} =  - C_n^1 + C_n^2.2x - ... + {\left( { - 1} \right)^n}C_n^n.n{x^{n - 1}}  \\
\end{array} $

c) ${\left( {x + 1} \right)^n} = C_n^0{x^n} + C_n^1{x^{n - 1}} + C_n^2{x^{n - 2}} + ... + C_n^{n - 1}x + C_n^n$
$\begin{array}
   \Rightarrow {\left[ {{{\left( {x + 1} \right)}^n}} \right]^\prime } = {\left[ {C_n^0{x^n} + C_n^1{x^{n - 1}} + C_n^2{x^{n - 2}} + ... + C_n^{n - 1}x + C_n^n} \right]^\prime }  \\
   \Rightarrow n{\left( {x + 1} \right)^{n - 1}} = C_n^0n{x^{n - 1}} + C_n^1(n - 1){x^{n - 2}} + C_n^2\left( {n - 2} \right){x^{n - 3}} + ... + C_n^{n - 1}  \\
\end{array} $

d) ${\left( {x - 1} \right)^n} = C_n^0{x^n} - C_n^1{x^{n - 1}} + C_n^2{x^{n - 2}} - ... + {\left( { - 1} \right)^{n - 1}}C_n^{n - 1}x + {\left( { - 1} \right)^n}C_n^n$
$\begin{array}
   \Rightarrow {\left[ {{{\left( {x - 1} \right)}^n}} \right]^\prime } = {\left[ {C_n^0{x^n} - C_n^1{x^{n - 1}} + C_n^2{x^{n - 2}} - ... + {{\left( { - 1} \right)}^{n - 1}}C_n^{n - 1}x + {{\left( { - 1} \right)}^n}C_n^n} \right]^\prime }  \\
   \Rightarrow n{\left( {x - 1} \right)^{n - 1}} = C_n^0n{x^{n - 1}} - C_n^1(n - 1){x^{n - 2}} + C_n^2\left( {n - 2} \right){x^{n - 3}} - ... + {\left( { - 1} \right)^{n - 1}}C_n^{n - 1}  \\
\end{array} $

Hoặc đạo hàm đến cấp 2:
$n(n - 1){\left( {1 + x} \right)^{n - 2}} = C_n^2.2.1 + C_n^3.3.2x + ... + C_n^nn(n - 1){x^{n - 2}}$
$n(n - 1){\left( {1 - x} \right)^{n - 2}} = C_n^2.2.1 - C_n^3.3.2x + C_n^4.4.3{x^2}... + {( - 1)^n}C_n^nn(n - 1){x^{n - 2}}$
$n(n - 1){\left( {x + 1} \right)^{n - 2}} = C_n^0n(n - 1){x^{n - 2}} + C_n^1(n - 1)(n - 2){x^{n - 3}} + ...C_n^{n - 3}.3.2x + C_n^{n - 2}.2.1$
$n(n - 1){(x - 1)^{n - 2}} = C_n^0n(n - 1){x^{n - 2}} - C_n^1(n - 1)(n - 2){x^{n - 3}} + ... $
                                                                $+ {( - 1)^{n - 3}}C_n^{n - 3}.3.2x + {( - 1)^{n - 2}}C_n^{n - 2}.2.1$

-  Tùy thuộc từng bài mà thế số mũ $n$, giá trị $x$ và một trong các công thức trên cho phù hợp.
-  Nếu mất những số hạng đầu ($C_n^0,C_n^1$) ta sử dụng các công thức chứa $\left( {1 + x} \right)$ nếu tổng không đan dấu, chứa $\left( {1 - x} \right)$ nếu tổng đan dấu. Nếu mất những số hạng sau $\left( {C_n^n,C_n^{n - 1}} \right)$ ta sử dụng các công thức chứa $\left( {x + 1} \right)$ nếu tổng không đan dấu, chứa $\left( {x - 1} \right)$ nếu tổng đan dấu.
-  Nếu mất một số hạng thì ta đạo hàm cấp 1, nếu mất 2 số hạng thì ta đạo hàm cấp 2.

Ta sẽ bàn phân tích kỹ cách áp dụng của phương pháp này trong từng bài toán cụ thể.

II. BÀI TẬP
Bài 1:

Chứng minh $\sum\limits_{k = 1}^n {{3^{k - 1}}.kC_n^k = n{{.4}^{n - 1}}} $
Phân tích: trong tổng có tổ hợp của $n$, mất $C_n^0$ và tổng không đan dấu nên ta sử dụng ${\left( {1 + x} \right)^n}$, đạo hàm cấp 1.
Giải:
Ta có:
     ${\left( {1 + x} \right)^n} = C_n^0 + C_n^1x + C_n^2{x^2} + ... + C_n^n{x^n}$
$\begin{array}
   \Rightarrow {\left[ {{{\left( {1 + x} \right)}^n}} \right]^\prime } = {\left[ {C_n^0 + C_n^1x + C_n^2{x^2} + ... + C_n^n{x^n}} \right]^\prime }  \\
   \Rightarrow n{\left( {1 + x} \right)^{n - 1}} = C_n^1 + C_n^2.2x + ... + C_n^n.n{x^{n - 1}}  \\
\end{array} $
Thế $x = 3$ ta được $n{.4^{n - 1}} = C_n^1 + C_n^2.2.3 + ...C_n^n.n{.3^{n - 1}} = \sum\limits_{k = 1}^n {k{{.3}^{k - 1}}C_n^k} $

Bài 2:
Chứng minh rằng $C_n^1 + 2C_n^2 + 3C_n^3 + ... + nC_n^n = n{.2^{n - 1}}$
Phân tích: trong tổng có tổ hợp của $n$, mất $C_n^0$ và tổng không đan dấu nên ta sử dụng ${\left( {1 + x} \right)^n}$, đạo hàm cấp 1.
Giải:
${\left( {1 + x} \right)^n} = C_n^0 + C_n^1x + C_n^2{x^2} + ... + C_n^n{x^n}$
$\begin{array}
   \Rightarrow {\left[ {{{\left( {1 + x} \right)}^n}} \right]^\prime } = {\left[ {C_n^0 + C_n^1x + C_n^2{x^2} + ... + C_n^n{x^n}} \right]^\prime }  \\
   \Rightarrow n{\left( {1 + x} \right)^{n - 1}} = C_n^1 + C_n^2.2x + ... + C_n^n.n{x^{n - 1}}  \\
\end{array} $
Thay $x = 1$, ta có điều phải chứng minh.

Bài 3:
Chứng minh: $2.1C_n^2 + 3.2C_n^3 + 4.3C_n^4 + ... + n(n - 1)C_n^n = n(n - 1){.2^{n - 2}}$
Phân tích: trong tổng có tổ hợp của n, mất $C_n^0,C_n^1$ và tổng không đan dấu nên ta sử dụng ${\left( {1 + x} \right)^n}$, đạo hàm cấp 2.
Giải:
     ${\left( {1 + x} \right)^n} = C_n^0 + C_n^1x + C_n^2{x^2} + ... + C_n^n{x^n}$
$\begin{array}
   \Rightarrow {\left[ {{{\left( {1 + x} \right)}^n}} \right]^\prime }^\prime  = {\left[ {C_n^0 + C_n^1x + C_n^2{x^2} + ... + C_n^n{x^n}} \right]^\prime }^\prime   \\
   \Rightarrow n(n - 1){\left( {1 + x} \right)^{n - 2}} = C_n^2.2.1 + C_n^3.3.2x + ... + C_n^nn(n - 1){x^{n - 2}}  \\
\end{array} $
Thay $x = 1$ vào đẳng thức cuối ta có điều phải chứng minh.

Bài 4:
Chứng minh $1C_n^1 - 2C_n^2 + 3C_n^3 - ... + {\left( { - 1} \right)^{n - 1}}nC_n^n = 0$
Phân tích: trong tổng có tổ hợp của $n$, mất $C_n^0$ và tổng đan dấu nên ta sử dụng ${\left( {1 - x} \right)^n}$, đạo hàm cấp 1.
Giải:
    ${\left( {1 - x} \right)^n} = C_n^0 - C_n^1x + C_n^2{x^2} - ... + {\left( { - 1} \right)^n}C_n^n{x^n}$
$\begin{array}
   \Rightarrow {\left[ {{{\left( {1 - x} \right)}^n}} \right]^\prime } = {\left[ {C_n^0 - C_n^1x + C_n^2{x^2} - ... + {{\left( { - 1} \right)}^n}C_n^n{x^n}} \right]^\prime }  \\
   \Rightarrow  - n{\left( {1 - x} \right)^{n - 1}} =  - C_n^1 + C_n^2.2x - ... + {\left( { - 1} \right)^n}C_n^n.n{x^{n - 1}}  \\
\end{array} $
Hay $C_n^1 - C_n^2.2x + C_n^3.3{x^2} - ... + {\left( { - 1} \right)^{n - 1}}C_n^n.n{x^{n - 1}} = n{\left( {1 - x} \right)^{n - 1}}$
Thay $x = 1$ ta có điều phải chứng minh.

Bài 5:
Chứng minh $nC_n^0 - (n - 1)C_n^1 + (n - 2)C_n^2 - (n - 3)C_n^3 + ... + {( - 1)^{n - 1}}C_n^{n - 1} = 0$
Phân tích: trong tổng có tổ hợp của $n$, mất $C_n^n$ và tổng đan dấu nên ta sử dụng ${\left( {x - 1} \right)^n}$, đạo hàm cấp 1.
Giải:
     ${\left( {x - 1} \right)^n} = C_n^0{x^n} - C_n^1{x^{n - 1}} + C_n^2{x^{n - 2}} - ... + {\left( { - 1} \right)^{n - 1}}C_n^{n - 1}x + {\left( { - 1} \right)^n}C_n^n$
$\begin{array}
   \Rightarrow {\left[ {{{\left( {x - 1} \right)}^n}} \right]^\prime } = {\left[ {C_n^0{x^n} - C_n^1{x^{n - 1}} + C_n^2{x^{n - 2}} - ... + {{\left( { - 1} \right)}^{n - 1}}C_n^{n - 1}x + {{\left( { - 1} \right)}^n}C_n^n} \right]^\prime }  \\
   \Rightarrow n{\left( {x - 1} \right)^{n - 1}} = C_n^0n{x^{n - 1}} - C_n^1(n - 1){x^{n - 2}} + C_n^2\left( {n - 2} \right){x^{n - 3}} - ... + {\left( { - 1} \right)^{n - 1}}C_n^{n - 1}  \\
\end{array} $
Thay $x = 1$ ta có điều phải chứng minh.

Bài 6:
Chứng minh $n(n - 1){2^{n - 2}} = n(n - 1)C_n^0 + (n - 1)(n - 2)C_n^1 + ... + 2C_n^{n - 2}$.
Phân tích: trong tổng có tổ hợp của $n$, mất $C_n^{n - 1},C_n^n$ và tổng không đan dấu nên ta sử dụng ${\left( {x + 1} \right)^n}$, đạo hàm cấp 2.
Giải:
 ${\left( {x + 1} \right)^n} = C_n^0{x^n} + C_n^1{x^{n - 1}} + C_n^2{x^{n - 2}} + ... + C_n^{n - 1}x + C_n^n$
$ \Rightarrow {\left[ {{{\left( {x + 1} \right)}^n}} \right]^{\prime \prime }} = {\left[ {C_n^0{x^n} + C_n^1{x^{n - 1}} + C_n^2{x^{n - 2}} + ... + C_n^{n - 1}x + C_n^n} \right]^{\prime \prime }}$ hay
$n(n - 1){\left( {x + 1} \right)^{n - 2}} = C_n^0n(n - 1){x^{n - 2}} + C_n^1(n - 1)(n - 2){x^{n - 3}} + ...C_n^{n - 3}.3.2x + C_n^{n - 2}.2.1$
Thay $x = 1$ ta có điều phải chứng minh.

Bài 7:
Tính $A = C_{12}^1 + 2C_{12}^2 + 3C_{12}^3 + ... + 12C_{12}^{12}$.
Phân tích: trong tổng có tổ hợp của 12, mất $C_{12}^0$ và tổng không đan dấu nên ta sử dụng ${\left( {1 + x} \right)^{12}}$.
Giải:
 ${\left( {1 + x} \right)^{12}} = C_{12}^0 + C_{12}^1x + C_{12}^2{x^2} + ... + C_{12}^{12}{x^{12}}$
$\begin{array}
   \Rightarrow {\left[ {{{\left( {1 + x} \right)}^{12}}} \right]^\prime } = {\left[ {C_{12}^0 + C_{12}^1x + C_{12}^2{x^2} + C_{12}^3{x^3} + ... + C_{12}^{12}{x^{12}}} \right]^\prime }  \\
   \Rightarrow 12{\left( {1 + x} \right)^{11}} = C_{12}^1 + 2C_{12}^2x + 3C_{12}^3{x^2}... + 12C_{12}^{12}{x^{11}}  \\
\end{array} $
Thay $x = 1$ ta được $A = {12.2^{11}}$.

Bài 8:
Chứng minh:
${( - 1)^{n - 1}}C_n^1 + {( - 1)^{n - 2}}.2.2C_n^2 + ... + {( - 1)^{n - k}}.k{.2^{k - 1}}C_n^k + ... + n{.2^{n - 1}}C_n^n = n$
Phân tích: do $ - 1$ đi kèm với lũy thừa, giữa các số hạng là dấu $+$ nên ta xem như tổng không đan dấu, chứa tổ hợp của $n$, mất $C_n^0$. Ta sử dụng ${\left( { - 1 + x} \right)^n}$, đạo hàm cấp 1.
Giải:
${\left( { - 1 + x} \right)^n} = {( - 1)^n}C_n^0 + {( - 1)^{n - 1}}C_n^1x + {( - 1)^{n - 2}}C_n^2{x^2} + ... + {( - 1)^{n - k}}C_n^k{x^k} + ... + C_n^n{x^n}$
$ \Rightarrow {\left[ {{{\left( { - 1 + x} \right)}^n}} \right]^\prime } = {\left[ {{{( - 1)}^n}C_n^0 + {{( - 1)}^{n - 1}}C_n^1x + {{( - 1)}^{n - 2}}C_n^2{x^2} + ... + {{( - 1)}^{n - k}}C_n^k{x^k} + ... + C_n^n{x^n}} \right]^\prime }$
$ \Rightarrow n{( - 1 + x)^{n - 1}} = {( - 1)^{n - 1}}C_n^1 + {( - 1)^{n - 2}}2C_n^2x + ... + {( - 1)^{n - k}}kC_n^k{x^{k - 1}} + ... + nC_n^n{x^{n - 1}}$
Thay $x = 2$ ta có điều phải chứng minh.

Bài 9:
Chứng minh
$n{4^{n - 1}}C_n^0 - (n - 1){4^{n - 2}}C_n^1 + (n - 2){4^{n - 3}}C_n^2 - ... + {( - 1)^{n - 1}}C_n^{n - 1} = C_n^1 + 2.2C_n^2 + ...n{.2^{n - 1}}C_n^n$
Phân tích: vế trái chứa tổ hợp của $n$, đan dấu, mất $C_n^n$ nên ta sử dụng ${\left( {x - 1} \right)^n}$, đạo hàm cấp 1. Vế phải cũng chứa tổ hợp của $n$ nhưng không đan dấu, mất $C_n^0$ nên ta sử dụng ${\left( {1 + x} \right)^n}$, đạo hàm cấp 1.
Giải:
${\left( {x - 1} \right)^n} = C_n^0{x^n} - C_n^1{x^{n - 1}} + C_n^2{x^{n - 2}} - ... + {\left( { - 1} \right)^{n - 1}}C_n^{n - 1}x + {\left( { - 1} \right)^n}C_n^n$
$\begin{array}
   \Rightarrow {\left[ {{{\left( {x - 1} \right)}^n}} \right]^\prime } = {\left[ {C_n^0{x^n} - C_n^1{x^{n - 1}} + C_n^2{x^{n - 2}} - ... + {{\left( { - 1} \right)}^{n - 1}}C_n^{n - 1}x + {{\left( { - 1} \right)}^n}C_n^n} \right]^\prime }  \\
   \Rightarrow n{\left( {x - 1} \right)^{n - 1}} = C_n^0n{x^{n - 1}} - C_n^1(n - 1){x^{n - 2}} + C_n^2\left( {n - 2} \right){x^{n - 3}} - ... + {\left( { - 1} \right)^{n - 1}}C_n^{n - 1}  \\
\end{array} $
Thay $x = 4$ ta được
$n{3^{n - 1}} = n{4^{n - 1}}C_n^0 - (n - 1){4^{n - 2}}C_n^1 + (n - 2){4^{n - 3}}C_n^2 - ... + {( - 1)^{n - 1}}C_n^{n - 1}$           (1)
${\left( {1 + x} \right)^n} = C_n^0 + C_n^1x + C_n^2{x^2} + ... + C_n^n{x^n}$
$\begin{array}
   \Rightarrow {\left[ {{{\left( {1 + x} \right)}^n}} \right]^\prime } = {\left[ {C_n^0 + C_n^1x + C_n^2{x^2} + ... + C_n^n{x^n}} \right]^\prime }  \\
   \Rightarrow n{\left( {1 + x} \right)^{n - 1}} = C_n^1 + C_n^2.2x + ... + C_n^n.n{x^{n - 1}}  \\
\end{array} $
Thay $x = 2$ ta được $n{3^{n - 1}} = C_n^1 + 2.2C_n^2 + ...n{.2^{n - 1}}C_n^n$        (2)
Từ (1) và (2) ta có điều phải chứng minh.

Bài 10:
Chứng minh $C_n^0 + 2C_n^1 + 3C_n^2 + ... + (n + 1)C_n^n = (n + 2){2^{n - 1}}$
Phân tích: tổng chứa tổ hợp của $n$, không đan dấu, hệ số gắn với $C_n^n$ lớn nhất nên ta sử dụng ${(1 + x)^n}$.
Thông thường là $kC_n^k$ song ở đây lại là $(k + 1)C_n^k$, hệ số đầu chênh lệch hơn 1 đơn vị nên ta nhân thêm 2 vế với $x$.
Giải:
$x{\left( {1 + x} \right)^n} = C_n^0x + C_n^1{x^2} + C_n^2{x^3} + ... + C_n^n{x^{n + 1}}$
Đạo hàm 2 vế ta được
$(nx + x + 1){(1 + x)^{n - 1}} = C_n^0 + 2C_n^1x + 3C_n^2{x^2} + ... + (n + 1)C_n^n{x^n}$
Thế $x = 1$ ta có điều phải chứng minh.

Bài 11:
Chứng minh $(n + 4){2^{n - 1}} = 2C_n^0 + 3C_n^1 + 4C_n^2 + ... + (n + 2)C_n^n$
Phân tích: tương tự như bài trên nhưng độ chênh lệch ở đây là 2 nên ta nhân thêm ${x^2}$ trước khi đạo hàm.
Giải:
${x^2}{(1 + x)^n} = C_n^0{x^2} + C_n^1{x^3} + C_n^2{x^4} + ... + C_n^n{x^{n + 2}}$
Đạo hàm 2 vế ta được
$2x{(1 + x)^n} + n{x^2}{(1 + x)^{n - 1}} = 2C_n^0x + 3C_n^1{x^2} + 4C_n^2{x^3} + ... + (n + 2)C_n^n{x^{n + 1}}$
Thay $x = 1$ ta được
      ${2^{n + 1}} + n{.2^{n - 1}} = 2C_n^0 + 3C_n^1 + 4C_n^2 + ... + (n + 2)C_n^n$
$ \Leftrightarrow (n + 4){2^{n - 1}} = 2C_n^0 + 3C_n^1 + 4C_n^2 + ... + (n + 2)C_n^n$

Bài 12:
Với $n \in {\mathbb{Z}^ + }$, $n > 2$, chứng minh
$C_n^0 - 2C_n^1 + 3C_n^2 - ... + {\left( { - 1} \right)^n}(n + 1)C_n^n = 0$
Giải:
$x{\left( {1 - x} \right)^n} = C_n^0x - C_n^1{x^2} + C_n^2{x^3} - ...{( - 1)^n}C_n^n{x^{n + 1}}$
Đạo hàm 2 vế ta được
${(1 - x)^n} - nx{(1 - x)^{n - 1}} = C_n^0 - 2C_n^1x + 3C_n^2{x^2} - ... + {( - 1)^n}(n + 1)C_n^n{x^n}$
Thay $x = 1$ ta có điều phải chứng minh.

Bài 13:
Với $n \in {\mathbb{Z}^ + }$, $n > 2$, chứng minh
$(n + 2)C_n^0 - (n + 1)C_n^1 + nC_n^2 - ... + {\left( { - 1} \right)^n}2C_n^n = 0$
Giải:
${x^2}{(x - 1)^n} = C_n^0{x^{n + 2}} - C_n^1{x^{n + 1}} + C_n^2{x^n} - ... + {( - 1)^n}C_n^n{x^2}$
Đạo hàm 2 vế ta được
$2x{\left( {x - 1} \right)^n} + n{x^2}{\left( {x - 1} \right)^{n - 1}} = (n + 2)C_n^0{x^{n + 1}} - (n + 1)C_n^1{x^n} + nC_n^2{x^{n - 1}} - ... + {( - 1)^n}.2C_n^nx$
Thế $x = 1$ ta có điều phải chứng minh.

Bài 14:
Tính $S = {1^2}C_n^1 + {2^2}C_n^2 + {3^2}C_n^3 + ... + {n^2}C_n^n$.
Phân tích: tổng mất $C_n^0$, không đan đấu, $n$ gắn với $C_n^n$ nên ta sẽ sử dụng ${\left( {1 + x} \right)^n}$ đạo hàm. Sau đạo hàm các hệ số là $kC_n^k$, nhưng hệ số đề ra lại là ${k^2}C_n^k$, ta phải đạo hàm lần nữa nhưng lại không được mất $C_n^1$ nên ta nhân thêm 2 vế với $x$ trước khi đạo hàm.
Giải:
${\left( {1 + x} \right)^n} = C_n^0 + C_n^1x + C_n^2{x^2} + ... + C_n^n{x^n}$
Đạo hàm 2 vế ta được
$n{\left( {1 + x} \right)^{n - 1}} = C_n^1 + C_n^2.2x + ... + C_n^n.n{x^{n - 1}}$
Nhân 2 vế với $x$
$nx{\left( {1 + x} \right)^{n - 1}} = C_n^1x + C_n^2.2{x^2} + ... + C_n^n.n{x^n}$
Đạo hàm 2 vế lần nữa ta được
$n{(1 + x)^{n - 1}} + n(n - 1)x{(1 + x)^{n - 2}} = C_n^1 + C_n^2{2^2}x + ... + C_n^n{n^2}{x^{n - 1}}$
Thế $x = 1$ ta được
$n{.2^{n - 1}} + n(n - 1){2^{n - 2}} = S$
Hay $S = n(n + 1){2^{n - 2}}$

Bài tập tự giải:
Bài 1:

Tính tổng $S = C_{2012}^0 + 2C_{2012}^1 + 3C_{2012}^2 + ... + 2013C_{2012}^{2012}$
Bài 2:
Tính $S = 2012.2011C_{2012}^0 - 2011.2010C_{2012}^1 + 2010.2009C_{2012}^2 - ... + 2.1C_{2012}^{2010}$
Bài 3:
Tính
$S = {2012.3^{2011}}C_{2012}^0 - {2011.3^{2010}}C_{2012}^1 + {2010.3^{2009}}C_{2012}^2 - ... + 2.3C_{2012}^{2010} - C_{2012}^{2011}$
Bài 4:
Tính $S = {1^2}C_{2012}^1 + {2^2}C_{2012}^2 + ... + {2012^2}C_{2012}^{2012}$

Thẻ

× 156
× 156
× 20

Lượt xem

24710
Chat chit và chém gió
  • Việt EL: ... 8/21/2017 8:20:01 AM
  • Việt EL: ... 8/21/2017 8:20:03 AM
  • wolf linhvân: 222 9/17/2017 7:22:51 AM
  • dominhdai2k2: u 9/21/2017 7:31:33 AM
  • arima sama: helllo m 10/8/2017 6:49:28 AM
  • ๖ۣۜGemღ: Mọi người có thắc mắc hay cần hỗ trợ gì thì gửi tại đây nhé https://goo.gl/dCdkAc 12/6/2017 8:53:25 PM
  • anhkind: hi mọi người mk là thành viên mới nè 12/28/2017 10:46:02 AM
  • anhkind: party 12/28/2017 10:46:28 AM
  • Rushia: . 2/27/2018 2:09:24 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:31 PM
  • Rushia: .. 2/27/2018 2:09:31 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:34 PM
  • ๖ۣۜBossღ: c 3/2/2018 9:20:18 PM
  • nguoidensau2k2: hello 4/21/2018 7:46:14 PM
  • ☼SunShine❤️: Vẫn vậy <3 7/31/2018 8:38:39 AM
  • ☼SunShine❤️: Bên này text chữ vẫn đẹp nhất <3 7/31/2018 8:38:52 AM
  • ☼SunShine❤️: @@ lại càng đẹp <3 7/31/2018 8:38:59 AM
  • ☼SunShine❤️: Hạnh phúc thế sad mấy câu hỏi vớ vẩn hồi trẩu vẫn hơn 1k xem 7/31/2018 8:41:00 AM
  • tuyencr123: vdfvvd 3/6/2019 9:30:53 PM
  • tuyencr123: dv 3/6/2019 9:30:53 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: dv 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: đ 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:01 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:05 PM
  • tuyencr123: đ 3/6/2019 9:31:05 PM
  • tuyencr123: bb 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:07 PM
  • tuyencr123: b 3/6/2019 9:31:38 PM
  • Tríp Bô Hắc: cho hỏi lúc đăng câu hỏi em có thấy dòng cuối là tabs vậy ghi gì vào tabs vậy ạ 7/15/2019 7:36:37 PM
  • khanhhuyen2492006: hi 3/19/2020 7:33:03 PM
  • ngoduchien36: hdbnwsbdniqwjagvb 11/17/2020 2:36:40 PM
  • tongthiminhhangbg: hello 6/13/2021 2:22:13 PM
Đăng nhập để chém gió cùng mọi người
  • hoàng anh thọ
  • Thu Hằng
  • Xusint
  • HọcTạiNhà
  • lilluv6969
  • ductoan933
  • Tiến Thực
  • my96thaibinh
  • 01668256114abc
  • Love_Chishikitori
  • meocon_loveky
  • gaprodianguc95
  • smallhouse253
  • hangnguyen.hn95.hn
  • nguyencongtrung9744
  • tart
  • kto138
  • dphonglkbq
  • ๖ۣۜPXM๖ۣۜMinh4212♓
  • huyhieu10.11.1999
  • phungduyen1403
  • lalinky.ltml1212
  • trananhvan12315
  • linh31485
  • thananh133
  • Confusion
  • Hàn Thiên Dii
  • •♥•.¸¸.•♥•Furin•♥•.¸¸.•♥•
  • dinhtuyetanh000
  • LeQuynh
  • tuanmotrach
  • bac1024578
  • truonglinhyentrung
  • Lê Giang
  • Levanbin147896325
  • anhquynhthivu
  • thuphuong30012003