Đáp án mới nhất

0

Cho : 2.cos2x -3 cosx -3 >0, chứng minh rằng: sin (1/cosx) < 0
2

Cho tam giác ABC không tù . CMR : $\tan \frac{A}{2}$ + $\tan \frac{B}{2} $$ + \tan \frac{C}{2}$ + $\tan \frac{A}{2}$$\tan \frac{B}{2}$$\tan \frac{C}{2}$ $\geq $ $\frac{10\sqrt{3}}{9}$
0

Cho $\frac{\sin \alpha+\sin \beta+\sin \gamma }{\sin(\alpha+\beta+\gamma)}=\frac{\cos\alpha+\cos\beta+\cos\gamma}{\cos(\alpha+\beta+\gamma)}=m$Tìm $\min P=\cos^n(\alpha+\beta)+cos^n(\beta+\gamma)+cos^n(\gamma+\alpha)$ với $n\in Z;n\ge2$
0

Cho $\frac{\sin \alpha+\sin \beta+\sin \gamma }{\sin(\alpha+\beta+\gamma)}=\frac{\cos\alpha+\cos\beta+\cos\gamma}{\cos(\alpha+\beta+\gamma)}=m$Tìm $\min P=\cos^n(\alpha+\beta)+cos^n(\beta+\gamma)+cos^n(\gamma+\alpha)$ với $n\in Z;n\ge2$
0

Cho $\frac{\sin \alpha+\sin \beta+\sin \gamma }{\sin(\alpha+\beta+\gamma)}=\frac{\cos\alpha+\cos\beta+\cos\gamma}{\cos(\alpha+\beta+\gamma)}=m$Tìm $\min P=\cos^n(\alpha+\beta)+cos^n(\beta+\gamma)+cos^n(\gamma+\alpha)$ với $n\in Z;n\ge2$
0

Cho $\frac{\sin \alpha+\sin \beta+\sin \gamma }{\sin(\alpha+\beta+\gamma)}=\frac{\cos\alpha+\cos\beta+\cos\gamma}{\cos(\alpha+\beta+\gamma)}=m$Tìm $\min P=\cos^n(\alpha+\beta)+cos^n(\beta+\gamma)+cos^n(\gamma+\alpha)$ với $n\in Z;n\ge2$
0

Cho $\frac{\sin \alpha+\sin \beta+\sin \gamma }{\sin(\alpha+\beta+\gamma)}=\frac{\cos\alpha+\cos\beta+\cos\gamma}{\cos(\alpha+\beta+\gamma)}=m$Tìm $\min P=\cos^n(\alpha+\beta)+cos^n(\beta+\gamma)+cos^n(\gamma+\alpha)$ với $n\in Z;n\ge2$
0

Cho $\frac{\sin \alpha+\sin \beta+\sin \gamma }{\sin(\alpha+\beta+\gamma)}=\frac{\cos\alpha+\cos\beta+\cos\gamma}{\cos(\alpha+\beta+\gamma)}=m$Tìm $\min P=\cos^n(\alpha+\beta)+cos^n(\beta+\gamma)+cos^n(\gamma+\alpha)$ với $n\in Z;n\ge2$
0

Cho $\frac{\sin \alpha+\sin \beta+\sin \gamma }{\sin(\alpha+\beta+\gamma)}=\frac{\cos\alpha+\cos\beta+\cos\gamma}{\cos(\alpha+\beta+\gamma)}=m$Tìm $\min P=\cos^n(\alpha+\beta)+cos^n(\beta+\gamma)+cos^n(\gamma+\alpha)$ với $n\in Z;n\ge2$
7

Cho $\frac{\sin \alpha+\sin \beta+\sin \gamma }{\sin(\alpha+\beta+\gamma)}=\frac{\cos\alpha+\cos\beta+\cos\gamma}{\cos(\alpha+\beta+\gamma)}=m$Tìm $\min P=\cos^n(\alpha+\beta)+cos^n(\beta+\gamma)+cos^n(\gamma+\alpha)$ với $n\in Z;n\ge2$
3

CHứng minh rằng $sinx+siny+sinz$ $\leq $ $3.sin$ $\frac{x+y+z}{3}$
6

cho tam giác $ABC$ thỏa mãn:$\frac{1}{\sin ^{a}A}+\frac{1}{\sin ^{b}B}+\frac{1}{\sin ^{c}C}\leq \frac{1}{\sqrt[x]{\cos \frac{A}{2}}}+\frac{1}{\sqrt[y]{\cos \frac{B}{2}}}+$$\frac{1}{\sqrt[z]{\cos \frac{C}{2}}}$ (với $a, b, c, x, y,z \in...
9

Chứng minh $\frac 1{\sin A}+\frac 1{\sin B}+\frac 1{\sin C} \ge \frac{1}{\cos \frac A2}+\frac 1{\cos \frac B2}+\frac 1{\cos \frac C2}$
8

tam giác ABC sẽ có đặc điểm gì nếu....:$\frac{\sqrt[2016]{\sin A }+\sqrt[2016]{\sin B}+\sqrt[2016]{\sin C}}{\sqrt[2016]{\cos \frac{A}{2}}+\sqrt[2016]{\cos \frac{B}{2}}+\sqrt[2016]{\cos \frac{C}{2}}}=1$......................................................................
0

giải pt lượng giác:$\frac{4sin^{2}2a}{1-cos^{2}a}=2$
3

$a) \cos A+\cos B+ \cos C \le \frac 32$$b) \cos2A+\cos 2B+\cos 2C \ge \frac{-3}2$$c)\sin \frac A2+\sin \frac B2+\sin \frac C2 \le \frac 32$$d) \cos A-\cos B + \cos C \ge \frac{-3}2$
4

$a) \cos A+\cos B+ \cos C \le \frac 32$$b) \cos2A+\cos 2B+\cos 2C \ge \frac{-3}2$$c)\sin \frac A2+\sin \frac B2+\sin \frac C2 \le \frac 32$$d) \cos A-\cos B + \cos C \ge \frac{-3}2$
Chat chit và chém gió
  • Việt EL: ... 8/21/2017 8:20:01 AM
  • Việt EL: ... 8/21/2017 8:20:03 AM
  • wolf linhvân: 222 9/17/2017 7:22:51 AM
  • dominhdai2k2: u 9/21/2017 7:31:33 AM
  • arima sama: helllo m 10/8/2017 6:49:28 AM
  • ๖ۣۜGemღ: Mọi người có thắc mắc hay cần hỗ trợ gì thì gửi tại đây nhé https://goo.gl/dCdkAc 12/6/2017 8:53:25 PM
  • anhkind: hi mọi người mk là thành viên mới nè 12/28/2017 10:46:02 AM
  • anhkind: party 12/28/2017 10:46:28 AM
  • Rushia: . 2/27/2018 2:09:24 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:31 PM
  • Rushia: .. 2/27/2018 2:09:31 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:34 PM
  • ๖ۣۜBossღ: c 3/2/2018 9:20:18 PM
  • nguoidensau2k2: hello 4/21/2018 7:46:14 PM
  • ☼SunShine❤️: Vẫn vậy <3 7/31/2018 8:38:39 AM
  • ☼SunShine❤️: Bên này text chữ vẫn đẹp nhất <3 7/31/2018 8:38:52 AM
  • ☼SunShine❤️: @@ lại càng đẹp <3 7/31/2018 8:38:59 AM
  • ☼SunShine❤️: Hạnh phúc thế sad mấy câu hỏi vớ vẩn hồi trẩu vẫn hơn 1k xem 7/31/2018 8:41:00 AM
  • tuyencr123: vdfvvd 3/6/2019 9:30:53 PM
  • tuyencr123: dv 3/6/2019 9:30:53 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: dv 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: đ 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:01 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:05 PM
  • tuyencr123: đ 3/6/2019 9:31:05 PM
  • tuyencr123: bb 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:07 PM
  • tuyencr123: b 3/6/2019 9:31:38 PM
  • Tríp Bô Hắc: cho hỏi lúc đăng câu hỏi em có thấy dòng cuối là tabs vậy ghi gì vào tabs vậy ạ 7/15/2019 7:36:37 PM
  • khanhhuyen2492006: hi 3/19/2020 7:33:03 PM
  • ngoduchien36: hdbnwsbdniqwjagvb 11/17/2020 2:36:40 PM
  • tongthiminhhangbg: hello 6/13/2021 2:22:13 PM
Đăng nhập để chém gió cùng mọi người
  • hoàng anh thọ
  • Thu Hằng
  • Xusint
  • HọcTạiNhà
  • lilluv6969
  • ductoan933
  • Tiến Thực
  • my96thaibinh
  • 01668256114abc
  • Love_Chishikitori
  • meocon_loveky
  • gaprodianguc95
  • smallhouse253
  • hangnguyen.hn95.hn
  • nguyencongtrung9744
  • tart
  • kto138
  • dphonglkbq
  • ๖ۣۜPXM๖ۣۜMinh4212♓
  • huyhieu10.11.1999
  • phungduyen1403
  • lalinky.ltml1212
  • trananhvan12315
  • linh31485
  • thananh133
  • Confusion
  • Hàn Thiên Dii
  • •♥•.¸¸.•♥•Furin•♥•.¸¸.•♥•
  • dinhtuyetanh000
  • LeQuynh
  • tuanmotrach
  • bac1024578
  • truonglinhyentrung
  • Lê Giang
  • Levanbin147896325
  • anhquynhthivu
  • thuphuong30012003