1+sin2xsinx−cosxsin22x=1+cos(π2−2x)=1+sin2x⇔sin2xsinx−sin22xcosx−sin2x=0⇔sin2x(sinx−sin2xcosx−1)=0$\Leftrightarrow \sin 2x(\sin x -1 -2\sin^2 x \cos x)=0$$\Leftrightarrow \sin 2x [\sin x (1-2\sin^2 x)-1]=0⇔sin2x(sinxcos2x−1)=0$TH1$sin2x=0$dễTH2$sinxcos2x=1\Leftrightarrow \sin 3x -\sin x = 2 \Leftrightarrow {sin3x=1sinx=−1vônghiệmKLptcónghiệm\sin 2x = 0 \Leftrightarrow x =\dfrac{k\pi}{2};\ k \in Z$
1+sin2xsinx−cosxsin22x=1+cos(π2−2x)=1+sin2x⇔sin2xsinx−sin22xcosx−sin2x=0⇔sin2x(sinx−sin2xcosx−1)=0$\Leftrightarrow \sin 2x(\sin x -1 -2\sin x \cos
^2x)=0$$\Leftrightarrow \sin 2x [\sin x (1-2\
cos^2 x)-1]=0$$\Leftrightarrow \sin 2x (
-\sin x \cos 2x -1)=0
TH1\sin 2x =0
dễTH2 \sin x \cos 2x =
-1$$\Leftrightarrow \sin 3x -\sin x =
-2 \Leftrightarrow \begin{cases}\sin 3x =
-1 \\ \sin x =-1 \end{cases}
vônghiệmKLptcónghiệm\sin 2x = 0 \Leftrightarrow x =\dfrac{k\pi}{2};\ k \in Z$