Có cos(5π12−x)=cos(6π12−π12−x)=sin(x+π12)PT⇔√2.2sinx.sin(x+π12)=1⇔√2.[cos(2x+π12)−cosπ12]=1$\Leftrightarrow \sqrt2.cos(2x+\pi/12)=1+\sqrt2.cos\frac{\pi}{12}=\frac{3+\sqrt3}2$$\Leftrightarrow cos(2x+\pi/12)=\frac{\sqrt6+3\sqrt2}4 >1$Vậy PT vô nghiệm
Có
cos(5π12−x)=cos(6π12−π12−x)=sin(x+π12)PT⇔√2.2sinx.sin(x+π12)=1$\Leftrightarrow
-\sqrt2 .[cos (2x+\frac{\pi}{12})-cos\frac{\pi}{12}]=1$$\Leftrightarrow
-\sqrt2.cos(2x+\pi/12)=1
-\sqrt2.cos\frac{\pi}{12}=\frac{
1-\sqrt3}2$$\Leftrightarrow cos(2x+\pi/12)=\frac{\sqrt6
-\sqrt2}4
=cos(\pm \frac{5\pi}{1
2}) $$x=\frac{\pi}6$ h
oặc $x=-\frac{\pi
}4$