$bài 1:ch o: a,b,c>0$ $a,t/m:a+b+c =3:CM:\frac {1}{2+a^2+b^2}+\fr ac{1}{2+b ^2+c^2}\frac{1}{2+c^2+a^2}\leq \frac {3}{4}$ $b, CM:\frac{\s qrt{ab}}{c+3\sqrt{ab}}+\frac{\sqrt{bc}}{a+3\sqrt {bc}}+\frac{\s qrt{ca }}{b+3\sqrt{ac}}\leq \frac{3}{4}$ $c,CM:\frac{1}{(a+b)^2}+bài1:cho:a,b,c>0a,t/m:a+b+c=3:CM:12+a2+b2+12+b2+c212+c2+a2≤34b,CM:√abc+3√ab+√bca+3√bc+√cab+3√ac≤34c,CM:1(a+b)2+1(a+c)2≥1a2+bcd,CM:Σ1a5+b2+c2≤3a2+b2+c2e,CM:Σa+bc2+ab≤1b+1a+1c
Bất đẳng thức Bu-nhi-a-cốp-xki
e ngh ĩ hết c ác h r mà toàn b ị ngược dấu, mấy s ư t ỉ và s ư ca giúp vsbài1:cho:a,b,c>0a,t/m:a+b+c=3:CM:12+a2+b2+12+b2+c212+c2+a2≤34b,CM:√abc+3√ab+√bca+3√bc+√cab+3√ac≤34c,CM:1(a+b)2+1(a+c)2≥1a2+bcd,CM:Σ1a5+b2+c2≤3a2+b2+c2e,CM:Σa+bc2+ab≤1b+1a+1c
Bất đẳng thức Bu-nhi-a-cốp-xki
$bài 1:ch o: a,b,c>0$ $a,t/m:a+b+c =3:CM:\frac {1}{2+a^2+b^2}+\fr ac{1}{2+b ^2+c^2}\frac{1}{2+c^2+a^2}\leq \frac {3}{4}$ $b, CM:\frac{\s qrt{ab}}{c+3\sqrt{ab}}+\frac{\sqrt{bc}}{a+3\sqrt {bc}}+\frac{\s qrt{ca }}{b+3\sqrt{ac}}\leq \frac{3}{4}$ $c,CM:\frac{1}{(a+b)^2}+bài1:cho:a,b,c>0a,t/m:a+b+c=3:CM:12+a2+b2+12+b2+c212+c2+a2≤34b,CM:√abc+3√ab+√bca+3√bc+√cab+3√ac≤34c,CM:1(a+b)2+1(a+c)2≥1a2+bcd,CM:Σ1a5+b2+c2≤3a2+b2+c2e,CM:Σa+bc2+ab≤1b+1a+1c
Bất đẳng thức Bu-nhi-a-cốp-xki
|