1a+2b+3cAM−GM≥66√ab2c3⇔6√ab2c3≥61a+2b+3c (1)
Lại có
1a+2b+3c=(1a−1)+(2b−2)+(3c−3)+6
=1−aa+2(1−b)b+3(1−c)c+6≤1−aa+2(1−b)a+3(1−c)a+6
=6−(a+2b+3c)a+6≤6−2(a+b+c)a+6
=6−2√(a+b+c)(1a+1b+1c)a+6≤6−2.√9a+6=6 (2)
~~~~~~~~~~
Từ (1) & (2) ⇒6√ab2c3≥1⇒P≥1
Vậy minP=1⇔a=b=c=1