ĐK: x≥12(√x−1−1)+(√5x−1−3)=x2−4
⇒2.x−2√x−1+1+5x−1−9√5x−1+3=(x+2)(x−2)
⇔(x−2)2√x−1+1+(x−2)5√5x−1+3=(x+2)(x−2)
⇒x=2 (nhận) hoặc
2√x−1+1+5√5x−1+3=x+2
⇔x+2−3−(2√x−1+1−2)−(5√5x−1+3−1)=0
⇔(x−1)+2√x−1√x−1+1+5(x−1)(√5x−1+3).(√5x−1+2)=0
⇒x=1( nhận)
vậy S=1;2