Cho pt: (m+1)x2−2(m−1)x+m−2=0. tìm m để x12+x22=0+)TH1:m=−1−>x ko tm
+TH2:m≠−1
ta có :Δ=(m−1)2−(m+1)(m−2)=−4m−1≥0
<−>m≤3
vậy pt có 2 nghiệm p/b x1;x2 với m≤3
=> theo vi-et ta có: x1+x2=2m−2m+1; x1x2=m−2m+1
có x12+x22=2<−>(x1+x2)2−4x1x2=2
−>(2m−2m+1)2−2m−2m+1=2
m=35