|
|
ta có $2^{2n+1}= C^{0}_{2n+1} + C^{1}_{2n+1}+......+C^{n}_{2n+1}+.....+C^{2n}_{2n+1} +c^{2n+1}_{2n+1}$ $C^{0}_{2n+1} = C^{2n+1}_{2n+1}$ ... $C^{n}_{2n+1} = c^{n+1}_{2n+1}$ $\Rightarrow 2^{2n+1} = 2(C^{0}_{2n+1} +....+C^{n}_{2n+1})$ $\Rightarrow (C^{0}_{2n+1} +....+C^{n}_{2n+1}) = 2^{2n}$ $\Rightarrow C^{1}_{2n+1}+....C^{n}_{2n+1} = 2^{2n} -1=2^{20} -1$ $\Rightarrow n=10$
|