2. Ta có:$P=x^2+\dfrac{2x}{y}+\dfrac{1}{y^2}+11(x+\dfrac{1}{y})+\dfrac{3}{x+\dfrac{1}{y}}$
$=(x+\dfrac{1}{y})^2+11(x+\dfrac{1}{y})+\dfrac{3}{x+\dfrac{1}{y}}$
Đặt: $t=x+\dfrac{1}{y}$, ta được:
$P=t^2+11t+\dfrac{3}{t}$
$=t^2-t+\dfrac{1}{4}+12t+\dfrac{3}{t}-\dfrac{1}{4}$
$=(t-\dfrac{1}{2})^2+2\sqrt{12t.\dfrac{3}{t}}-\dfrac{1}{4}=\dfrac{47}{4}$
$\min P=\dfrac{47}{4} \Leftrightarrow t=\dfrac{1}{2} \Leftrightarrow \left\{\begin{array}{l}x=\dfrac{1}{4}\\y=4\end{array}\right.$