Đặt E=y4(x2+y2)(x+y)+z4(y2+z2)(y+z)+x4(z2+x2)(z+x)
Ta có:
F−E=x4−y4(x2+y2)(x+y)+y4−z4(y2+z2)(y+z)+z4−x4(z2+x2)(z+x)
=(x−y)(x+y)(x2+y2)(x2+y2)(x+y)+(y−z)(y+z)(y2+z2)(y2+z2)(y+z)+(z−x)(z+x)(z2+x2)(z2+x2)(z+x)
=(x−y)+(y−z)+(z−x)=0
Suy ra:
2F=x4+y4(x2+y2)(x+y)+y4+z4(y2+z2)(y+z)+z4+x4(z2+x2)(z+x)
≥(x2+y2)22(x2+y2)(x+y)+(y2+z2)22(y2+z2)(y+z)+(z2+x2)22(z2+x2)(z+x)
=x2+y22(x+y)+y2+z22(y+z)+z2+x22(z+x)
≥(x+y)24(x+y)+(y+z)24(y+z)+(z+x)24(z+x)
=x+y4+y+z4+z+x4=12
⇒F≥14
min