$PT<=>\sqrt{3}(sin4x-cos2x)=sin(4x-\frac{\pi}{2})-sin(-2x+\pi)$
$<=>\sqrt3(sin4x-cos2x)=cos4x-sin2x$
$<=>\sqrt3sin4x-cos4x+sin2x-\sqrt3cos2x=0$
$<=>\frac{\sqrt3}{2}sin4x-\frac{1}{2}cos4x+\frac{1}{2}sin2x-\frac{\sqrt3}{2}cos2x=0$
$<=>sin(4x-\frac{\pi}{6})+sin(2x-\frac{\pi}{3})=0$
$<=>2sin(3x-\frac{\pi}4)cos(x+\frac{\pi}{12})=0$
$XONG$