c)$lim(\sqrt[3]{n^3-3n^2+1}-\sqrt{n^2+4n})$
$=lim(\sqrt[3]{n^3-3n^2+1}-n+n-\sqrt{n^2+4n})$
$=lim(\sqrt[3]{n^3-3n^2+1}-n)+lim(n-\sqrt{n^2+4n})$
$=lim\frac{-3n^2+1}{\sqrt[3]{(n^3-3n^2+1)^2}+n\sqrt[3]{n^3-3n^2+1}+n^2}+lim\frac{-4n}{n+\sqrt{n^2+4n}}$
$=lim\frac{-3+1/n^2}{\sqrt[2]{(1-3/n+1/n^3)^2}+\sqrt[3]{1-3/n+1/n^3}+1}+lim\frac{-4}{1+\sqrt{1+4/n}}$
$=-1-2=-3$