Ta có
x2+ln(x2ex)(x+2)2=x2+ln(x2)+lnex(x+2)2=x2+2lnx+x(x+2)2
Suy ra
I=2∫1x2+ln(x2ex)(x+2)2dx=I1+I2. Trong đó
∙I1=2∫1x2+x(x+2)2dx
I1=2∫1(x+2)2+2−3(x+2)(x+2)2dx=2∫1(1+2(x+2)2−3x+2)dx=[x−2x+2−3ln(x+2)]21=76−ln6427
∙I2=2∫12lnx(x+2)2dx. Ta dùng phương pháp tích phân từng phần.
I2=−22∫1lnxd(1x+2)=−2[lnxx+2]21+2∫12x(x+2)dx=[1x−1x+2−2lnxx+2]21=12ln98.