Đặt $t = 2^{3x}$ ĐK $t>0; t\neq 0$
TH1 $\left| {x - 1} \right| = x - 1$$\Rightarrow$ PTTT
$5.\frac{t}{8} - \frac{96}{t} +7 = 0$
$\Leftrightarrow 5t^2 + 56 t -768 = 0$
$\Leftrightarrow t=8$
$\Rightarrow$ $2^{3x} = 8$
$\Leftrightarrow x =1$
TH2 $\left| {x - 1} \right| = 1 - x$
$\Rightarrow PTTT$
$\frac{40}{t} - \frac{96}{t} + 7 = 0$
$\Leftrightarrow7t = 56$
$\Leftrightarrow t = 8$