|
x3+y3+z3≥3xyz (x+y)3–3xy(x+y)+z3−3xyz≥0 (x+y+z)[(x+y)2−(x+y)z+z2]−3xy(x+y+z)≥0 (x+y+z)(x2+y2+z2+2xy–xz−yz)−3xy(x+y+z)≥0 (x+y+z)(x2+y2+z2–xy–yz–zx)≥0 (x+y+z)(2x2+2y2+2z2–2xy–2yz–2zx)≥0 (x+y+z)[(x–y)2+(y–z)2+(x–z)2]≥0(đúngvớimọix,y,z≥0) Dấu bằng xảy ra khi : x=y=z
|