$\int\limits_{0}^{2}\frac{x^{2}.e^{x}}{(x+2)^{2}}dx$
$\int\limits_{-1}^{0}\frac{dx}{x^{2}+2x+4}$
$\int\limits_{1}^{2}\frac{dx}{x\sqrt{x^{3}+1}}$
Bài 3:
$K = \int\limits_1^2 {\frac{{dx}}{{x\sqrt {{x^3} + 1} }}}  = \int\limits_1^2 {\frac{{{x^2}dx}}{{{x^3}\sqrt {{x^3} + 1} }}} $
Đặt: \[t = \sqrt {{x^3} + 1}  \Leftrightarrow {t^2} = {x^3} + 1 \Leftrightarrow \frac{{2tdt}}{3} = {x^2}dx\]\[x = 2 \Rightarrow t = 3\]\[x = 1 \Rightarrow t = \sqrt 2 \]\[ \Rightarrow K = \frac{2}{3}\int\limits_{\sqrt 2 }^3 {\frac{{tdt}}{{({t^2} - 1)t}}}  = \frac{2}{3}\int\limits_{\sqrt 2 }^3 {\frac{{dt}}{{{t^2} - 1}}}  = \frac{1}{3}\int\limits_{\sqrt 2 }^3 {(\frac{1}{{t - 1}}}  - \frac{1}{{t + 1}})dt = \frac{1}{3}\left( {\ln \left| {t - 1} \right| - \ln \left| {t + 1} \right|} \right) = \frac{1}{3}\ln \frac{{{{(\sqrt 2  + 1)}^2}}}{2}\]
Bài 2: 
$J = \int\limits_{ - 1}^0 {\frac{{dx}}{{{x^2} + 2x + 4}}}  = \int\limits_{ - 1}^0 {\frac{{dx}}{{{{(x + 1)}^2} + 3}}} $
Đặt \[x + 1 = \sqrt 3 \tan t,t \in \left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\]
\[dx = \sqrt 3 ({\tan ^2}t + 1)dt\]\[x = 0 \Rightarrow t = \frac{\pi }{6}\]\[x =  - 1 \Rightarrow t = 0\]
\[ \Rightarrow J = \int\limits_0^{\frac{\pi }{6}} {\frac{{\sqrt 3 ({{\tan }^2}t + 1)dt}}{{3{{\tan }^2}t + 3}}}  = \frac{{\sqrt 3 }}{3}\int\limits_0^{\frac{\pi }{6}} {dt}  = \frac{{\sqrt 3 }}{3}.\frac{\pi }{6} = \frac{{\pi \sqrt 3 }}{{18}}\]
Bài 1:
\[\frac{{{x^2}}}{{{{(x + 2)}^2}}} = \frac{{({x^2} + 4x + 4) - 4(x + 2) + 4}}{{{{(x + 2)}^2}}} = 1 - \frac{4}{{x + 2}} + \frac{4}{{{{(x + 2)}^2}}}\]
\[ \Rightarrow I = \int\limits_0^2 {{e^x}dx - 4} \int\limits_0^2 {\frac{{{e^x}}}{{x + 2}}dx + 4} \int\limits_0^2 {\frac{{{e^x}}}{{{{(x + 2)}^2}}}dx} \]
Ta tính tích phân $\int\limits_0^2 {\frac{{{e^x}}}{{x + 2}}dx}$:
Đặt: \[u = \frac{1}{{x + 2}} \Rightarrow du =  - \frac{{dx}}{{{{(x + 2)}^2}}}\]
\[dv = {e^x}dx \Leftarrow v = {e^x}\]
$ \Rightarrow I = {e^2} - 1 - 4\left( {\frac{{{e^x}}}{{x + 2}}\begin{cases}2 \\ 0 \end{cases} + \int\limits_0^2 {\frac{{{e^x}}}{{{{(x + 2)}^2}}}dx} } \right) + 4\int\limits_0^2 {\frac{{{e^x}}}{{{{(x + 2)}^2}}}dx}$
$I = {e^2} - 1 - 4(\frac{{{e^2}}}{4} - \frac{1}{2}) = 1$

Bạn cần đăng nhập để có thể gửi đáp án

Chat chit và chém gió
  • Việt EL: ... 8/21/2017 8:20:01 AM
  • Việt EL: ... 8/21/2017 8:20:03 AM
  • wolf linhvân: 222 9/17/2017 7:22:51 AM
  • dominhdai2k2: u 9/21/2017 7:31:33 AM
  • arima sama: helllo m 10/8/2017 6:49:28 AM
  • ๖ۣۜGemღ: Mọi người có thắc mắc hay cần hỗ trợ gì thì gửi tại đây nhé https://goo.gl/dCdkAc 12/6/2017 8:53:25 PM
  • anhkind: hi mọi người mk là thành viên mới nè 12/28/2017 10:46:02 AM
  • anhkind: party 12/28/2017 10:46:28 AM
  • Rushia: . 2/27/2018 2:09:24 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:31 PM
  • Rushia: .. 2/27/2018 2:09:31 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:34 PM
  • ๖ۣۜBossღ: c 3/2/2018 9:20:18 PM
  • nguoidensau2k2: hello 4/21/2018 7:46:14 PM
  • ☼SunShine❤️: Vẫn vậy <3 7/31/2018 8:38:39 AM
  • ☼SunShine❤️: Bên này text chữ vẫn đẹp nhất <3 7/31/2018 8:38:52 AM
  • ☼SunShine❤️: @@ lại càng đẹp <3 7/31/2018 8:38:59 AM
  • ☼SunShine❤️: Hạnh phúc thế sad mấy câu hỏi vớ vẩn hồi trẩu vẫn hơn 1k xem 7/31/2018 8:41:00 AM
  • tuyencr123: vdfvvd 3/6/2019 9:30:53 PM
  • tuyencr123: dv 3/6/2019 9:30:53 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: dv 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: đ 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:01 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:05 PM
  • tuyencr123: đ 3/6/2019 9:31:05 PM
  • tuyencr123: bb 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:07 PM
  • tuyencr123: b 3/6/2019 9:31:38 PM
  • Tríp Bô Hắc: cho hỏi lúc đăng câu hỏi em có thấy dòng cuối là tabs vậy ghi gì vào tabs vậy ạ 7/15/2019 7:36:37 PM
  • khanhhuyen2492006: hi 3/19/2020 7:33:03 PM
  • ngoduchien36: hdbnwsbdniqwjagvb 11/17/2020 2:36:40 PM
  • tongthiminhhangbg: hello 6/13/2021 2:22:13 PM
Đăng nhập để chém gió cùng mọi người
  • hoàng anh thọ
  • Thu Hằng
  • Xusint
  • HọcTạiNhà
  • lilluv6969
  • ductoan933
  • Tiến Thực
  • my96thaibinh
  • 01668256114abc
  • Love_Chishikitori
  • meocon_loveky
  • gaprodianguc95
  • smallhouse253
  • hangnguyen.hn95.hn
  • nguyencongtrung9744
  • tart
  • kto138
  • dphonglkbq
  • ๖ۣۜPXM๖ۣۜMinh4212♓
  • huyhieu10.11.1999
  • phungduyen1403
  • lalinky.ltml1212
  • trananhvan12315
  • linh31485
  • thananh133
  • Confusion
  • Hàn Thiên Dii
  • •♥•.¸¸.•♥•Furin•♥•.¸¸.•♥•
  • dinhtuyetanh000
  • LeQuynh
  • tuanmotrach
  • bac1024578
  • truonglinhyentrung
  • Lê Giang
  • Levanbin147896325
  • anhquynhthivu
  • thuphuong30012003