|
mãi mới ra gê qá X_X pt<=>Sin3x+Cos3x−2Sinx=2√2(1−4sin2x) <−>Sin3x−Sinx−Sinx+Cos3x=2√2(1−4(1−Cos2x))<−>2Cos2xSinx−Sinx+Cos3x=2√2(4Cos2x−3) <−>Sinx(2Cos2x−1)+Cos3x=2√2(4Cos2x−3) <-> Sinx[2(2Cos2x−1)−1)+Cos3x=2√2(4Cos2x−3) <−>(Sinx−2√2)(4Cos2x−3)+Cosx3=0 <−>(Sinx−2√2)(4Cos2x−3)+Cos(4Cos2x−3)=0
<−>(4Cos2x−3)(Sinx+Cosx−2√2)=0
|