2/ I=π/2∫0cos2x3sinx+4cosxdx
Đặt J=π/2∫0sin2x3sinx+4cosxdx
* 16I−9J=π/2∫016cos2x−9sin2x3sinx+4cosxdx=π/2∫0(4cosx−3sinx)dx=1(1).
* I+J=π/2∫013sinx+4cosxdx
3sinx+4cosx=6sinx2cosx2+4cos2x2−4sin2x2
=−2cos2x2(2tan2x2−3tanx2−2)
Đặt t=tanx2⇒dt=dx2cos2x2
I+J=−π/2∫0dx2cos2x2(2tan2x2−3tanx2−2)=−1∫0dt2t2−3t−2
=−151∫0(1t−2−22t+1)dt=15ln6(2).
* Từ (1) và (2) suy ra I=5+9ln6125