|
PT $\Leftrightarrow \ln 2^{x^2-1}=\ln 3^{2x-2}\Leftrightarrow (x^2-1)\ln 2 = (2x-2)\ln 3$ $\Leftrightarrow x^2\ln 2-2x\ln 3-(\ln 2+2\ln 3)=0$ $\Delta ' =\ln^2 3+\ln 2(\ln 2+2\ln 3)=(\ln 2+\ln 3)^2$ $\Leftrightarrow \left[ {\begin{matrix} x_1=\frac{\ln 3+(\ln 2+\ln 3)}{\ln 2}\\ x_2=\frac{\ln 3-(\ln 2+\ln 3)}{\ln 2}=-1\end{matrix}} \right.$
|