1) Ta có: A=cos(1350+3600.12)−cos(2250+3600.2)+tan(−450+3600.3)−cot(−600−3600.4)=cos1350−cos2250+tan(−450)−cot(−600)=−cos450+cos450−tan450+cot600=−3+√33.B=(tan90+tan810)−(tan270+tan630)=(tan90+cot90)−(tan270+cot270)=(sin90cos90+cos90sin90)−(sin270cos270+cos270sin270)=sin290+cos290sin90.cos90−sin2270+cos2270sin270.cos270=1sin90.cos90−1sin270.cos270=2(1sin180−1sin540)=2(sin540−sin180sin180.sin540)=4cos360.sin180sin180.sin540=4.sin540sin540=4.