|
L=\mathop {\lim }\limits\left(1+a\right)\left(1+a^2\right)\left(1+a^4\right)+...+\left(1+a^{2^{n}}\right) =\mathop {\lim }\limits\dfrac{1}{1-a}(1-a)\left(1+a\right)\left(1+a^2\right)\left(1+a^4\right)+...+\left(1+a^{2^{n}}\right) =\mathop {\lim }\limits\dfrac{1}{1-a}(1-a^2)\left(1+a^2\right)\left(1+a^4\right)+...+\left(1+a^{2^{n}}\right) =\mathop {\lim }\limits\dfrac{1}{1-a}(1-a^4)\left(1+a^4\right)+...+\left(1+a^{2^{n}}\right) =... =\mathop {\lim }\limits\dfrac{1}{1-a}\left(1-a^{2^{n}}\right)\left(1+a^{2^{n}}\right) =\mathop {\lim }\limits\dfrac{1}{1-a}\left(1-a^{2^{n+1}}\right) Do |a|<1\Rightarrow \mathop {\lim }\limits\left(1-a^{2^{n+1}}\right)=1-0=1 Vậy L=\dfrac{1}{1-a}.
|