Tính các giới hạn :

1) $\mathop {\lim }\limits_{x \to 0}$$\frac{\sqrt{1-2x}-\sqrt[3]{1+3x}}{x^2}$                            2) $\mathop {\lim }\limits_{x \to 0}$$\frac{\sqrt{1+2x}\sqrt[3]{1+3x}\sqrt[3]{1+4x}-1}{x}$                    

3) $\mathop {\lim }\limits_{x \to 0}$$\frac{\sqrt[m]{1+ax}\sqrt[n]{1+bx}-1}{x}$                         4)  $\mathop {\lim }\limits_{x \to 1}$$\frac{2-\sqrt{2x-1}\sqrt[3]{5x+3}}{x-1}$                     

5) $\mathop {\lim }\limits_{x \to 2}$$\frac{\sqrt[3]{3x+2}-\sqrt{x+2}}{x^2-x-2}$                             6) $\mathop {\lim }\limits_{x \to 1}$ $\frac{\sqrt{4x+5}+\sqrt{3x+1}-5}{x-1}$
6.
     $\mathop {\lim }\limits_{x \to 1}\dfrac{\sqrt{4x+5}+\sqrt{3x+1}-5}{x-1}$
$=\mathop {\lim }\limits_{x \to 1}\dfrac{(\sqrt{4x+5}-3)+(\sqrt{3x+1}-2)}{x-1}$
$=\mathop {\lim }\limits_{x \to 1}\dfrac{\dfrac{4x-4}{\sqrt{4x+5}+3}+\dfrac{3x-3}{\sqrt{3x+1}+2}}{x-1}$
$=\mathop {\lim }\limits_{x \to 1}\left(\dfrac{4}{\sqrt{4x+5}+3}+\dfrac{3}{\sqrt{3x+1}+2}\right)=\dfrac{17}{12}$
Nếu thấy lời giải đúng thì bạn vui lòng đánh dấu vào hình chữ V dưới phần vote để xác nhận nhá. Thanks! –  khangnguyenthanh 08-02-13 10:00 PM
5.
     $\mathop {\lim }\limits_{x \to 2}\dfrac{\sqrt[3]{3x+2}-\sqrt{x+2}}{x^2-x-2}$
$=\mathop {\lim }\limits_{x \to 2}\dfrac{(\sqrt[3]{3x+2}-2)-(\sqrt{x+2}-2)}{x^2-x-2}$
$=\mathop {\lim }\limits_{x \to 2}\dfrac{\dfrac{3x-6}{\sqrt[3]{(3x+2)^2}+2\sqrt[3]{3x+2}+4}-\dfrac{x-2}{\sqrt{x+2}+2}}{(x-2)(x+1)}$
$=\mathop {\lim }\limits_{x \to 2}\dfrac{\dfrac{3}{\sqrt[3]{(3x+2)^2}+2\sqrt[3]{3x+2}+4}-\dfrac{1}{\sqrt{x+2}+2}}{x+1}=0$
Nếu thấy lời giải đúng thì bạn vui lòng đánh dấu vào hình chữ V dưới phần vote để xác nhận nhá. Thanks! –  khangnguyenthanh 08-02-13 10:00 PM
4.
     $\mathop {\lim }\limits_{x \to 1}\dfrac{2-\sqrt{2x-1}\sqrt[3]{5x+3}}{x-1}$
$=\mathop {\lim }\limits_{x \to 1}\dfrac{(2-2\sqrt{2x-1})+\sqrt{2x-1}(2-\sqrt[3]{5x+3})}{x-1}$
$=\mathop {\lim }\limits_{x \to 1}\dfrac{\dfrac{2(2-2x)}{1+\sqrt{2x-1}}+\dfrac{\sqrt{2x-1}(5-5x)}{4+2\sqrt[3]{5x+3}+\sqrt[3]{(5x+3)^2}}}{x-1}$
$=\mathop {\lim }\limits_{x \to 1}\left(\dfrac{-4}{1+\sqrt{2x-1}}-\dfrac{5\sqrt{2x-1}}{4+2\sqrt[3]{5x+3}+\sqrt[3]{(5x+3)^2}}\right)=\dfrac{-29}{12}$
Nếu thấy lời giải đúng thì bạn vui lòng đánh dấu vào hình chữ V dưới phần vote để xác nhận nhá. Thanks! –  khangnguyenthanh 08-02-13 09:59 PM
3.
     $\mathop {\lim }\limits_{x \to 0}\dfrac{\sqrt[m]{1+ax}\sqrt[n]{1+bx}-1}{x}$
$=\mathop {\lim }\limits_{x \to 0}\dfrac{\sqrt[m]{1+ax}(\sqrt[n]{1+bx}-1)+(\sqrt[m]{1+ax}-1)}{x}$
$=\mathop {\lim }\limits_{x \to 0}\dfrac{\dfrac{bx\sqrt[m]{1+ax}}{\sqrt[n]{(1+bx)^{n-1}}+\ldots+\sqrt[n]{1+bx}+1}+\dfrac{ax}{\sqrt[m]{(1+ax)^{m-1}}+\ldots+\sqrt[m]{1+ax}+1}}{x}$
$=\mathop {\lim }\limits_{x \to 0}\left(\dfrac{b\sqrt[m]{1+ax}}{\sqrt[n]{(1+bx)^{n-1}}+\ldots+\sqrt[n]{1+bx}+1}+\dfrac{a}{\sqrt[m]{(1+ax)^{m-1}}+\ldots+\sqrt[m]{1+ax}+1}\right)=\dfrac{a}{m}+\dfrac{b}{n}$
Nếu thấy lời giải đúng thì bạn vui lòng đánh dấu vào hình chữ V dưới phần vote để xác nhận nhá. Thanks! –  khangnguyenthanh 08-02-13 09:58 PM
2.
     $\mathop {\lim }\limits_{x \to 0}\dfrac{\sqrt{1+2x}\sqrt[3]{1+3x}\sqrt[3]{1+4x}-1}{x}$
$=\mathop {\lim }\limits_{x \to 0}\dfrac{\sqrt{1+2x}\sqrt[3]{1+3x}(\sqrt[3]{1+4x}-1)+\sqrt{1+2x}(\sqrt[3]{1+3x}-1)+(\sqrt{1+2x}-1)}{x}$
$=\mathop {\lim }\limits_{x \to 0}\dfrac{\dfrac{4x\sqrt{1+2x}\sqrt[3]{1+3x}}{\sqrt[3]{(1+4x)^2}+\sqrt[3]{1+4x}+1}+\dfrac{3x\sqrt{1+2x}}{\sqrt[3]{(1+3x)^2}+\sqrt[3]{1+3x}+1}+\dfrac{2x}{\sqrt{1+2x}+1}}{x}$
$=\mathop {\lim }\limits_{x \to 0}\left(\dfrac{4\sqrt{1+2x}\sqrt[3]{1+3x}}{\sqrt[3]{(1+4x)^2}+\sqrt[3]{1+4x}+1}+\dfrac{3\sqrt{1+2x}}{\sqrt[3]{(1+3x)^2}+\sqrt[3]{1+3x}+1}+\dfrac{2}{\sqrt{1+2x}+1}\right)=\dfrac{10}{3}$

a có thể giải thích cho e cách làm của bài này đc k ? –  mackhue59 11-02-13 12:49 AM
Nếu thấy lời giải đúng thì bạn vui lòng đánh dấu vào hình chữ V dưới phần vote để xác nhận nhá. Thanks! –  khangnguyenthanh 08-02-13 09:57 PM
1.
     $\mathop {\lim }\limits_{x \to 0}\dfrac{\sqrt{1-2x}-\sqrt[3]{1+3x}}{x^2}$
$=\mathop {\lim }\limits_{x \to 0}\dfrac{(\sqrt{1-2x}-1)-(\sqrt[3]{1+3x}-1)}{x^2}$
$=\mathop {\lim }\limits_{x \to 0}\dfrac{\dfrac{-2x}{\sqrt{1-2x}+1}-\dfrac{3x}{\sqrt[3]{(1+3x)^2}+\sqrt[3]{1+3x}+1}}{x^2}$
$=\mathop {\lim }\limits_{x \to 0}\dfrac{\dfrac{-2}{\sqrt{1-2x}+1}-\dfrac{3}{\sqrt[3]{(1+3x)^2}+\sqrt[3]{1+3x}+1}}{x}$
Mà $\mathop {\lim }\limits_{x \to 0^+}\dfrac{\dfrac{-2}{\sqrt{1-2x}+1}-\dfrac{3}{\sqrt[3]{(1+3x)^2}+\sqrt[3]{1+3x}+1}}{x}=-\infty$
       $\mathop {\lim }\limits_{x \to 0^-}\dfrac{\dfrac{-2}{\sqrt{1-2x}+1}-\dfrac{3}{\sqrt[3]{(1+3x)^2}+\sqrt[3]{1+3x}+1}}{x}=+\infty$
nên giới hạn cần tìm không tồn tại.
Nếu thấy lời giải đúng thì bạn vui lòng đánh dấu vào hình chữ V dưới phần vote để xác nhận nhá. Thanks! –  khangnguyenthanh 08-02-13 09:57 PM

Bạn cần đăng nhập để có thể gửi đáp án

Chat chit và chém gió
  • Việt EL: ... 8/21/2017 8:20:01 AM
  • Việt EL: ... 8/21/2017 8:20:03 AM
  • wolf linhvân: 222 9/17/2017 7:22:51 AM
  • dominhdai2k2: u 9/21/2017 7:31:33 AM
  • arima sama: helllo m 10/8/2017 6:49:28 AM
  • ๖ۣۜGemღ: Mọi người có thắc mắc hay cần hỗ trợ gì thì gửi tại đây nhé https://goo.gl/dCdkAc 12/6/2017 8:53:25 PM
  • anhkind: hi mọi người mk là thành viên mới nè 12/28/2017 10:46:02 AM
  • anhkind: party 12/28/2017 10:46:28 AM
  • Rushia: . 2/27/2018 2:09:24 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:31 PM
  • Rushia: .. 2/27/2018 2:09:31 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:34 PM
  • ๖ۣۜBossღ: c 3/2/2018 9:20:18 PM
  • nguoidensau2k2: hello 4/21/2018 7:46:14 PM
  • ☼SunShine❤️: Vẫn vậy <3 7/31/2018 8:38:39 AM
  • ☼SunShine❤️: Bên này text chữ vẫn đẹp nhất <3 7/31/2018 8:38:52 AM
  • ☼SunShine❤️: @@ lại càng đẹp <3 7/31/2018 8:38:59 AM
  • ☼SunShine❤️: Hạnh phúc thế sad mấy câu hỏi vớ vẩn hồi trẩu vẫn hơn 1k xem 7/31/2018 8:41:00 AM
  • tuyencr123: vdfvvd 3/6/2019 9:30:53 PM
  • tuyencr123: dv 3/6/2019 9:30:53 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: dv 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: đ 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:01 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:05 PM
  • tuyencr123: đ 3/6/2019 9:31:05 PM
  • tuyencr123: bb 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:07 PM
  • tuyencr123: b 3/6/2019 9:31:38 PM
  • Tríp Bô Hắc: cho hỏi lúc đăng câu hỏi em có thấy dòng cuối là tabs vậy ghi gì vào tabs vậy ạ 7/15/2019 7:36:37 PM
  • khanhhuyen2492006: hi 3/19/2020 7:33:03 PM
  • ngoduchien36: hdbnwsbdniqwjagvb 11/17/2020 2:36:40 PM
  • tongthiminhhangbg: hello 6/13/2021 2:22:13 PM
Đăng nhập để chém gió cùng mọi người
  • hoàng anh thọ
  • Thu Hằng
  • Xusint
  • HọcTạiNhà
  • lilluv6969
  • ductoan933
  • Tiến Thực
  • my96thaibinh
  • 01668256114abc
  • Love_Chishikitori
  • meocon_loveky
  • gaprodianguc95
  • smallhouse253
  • hangnguyen.hn95.hn
  • nguyencongtrung9744
  • tart
  • kto138
  • dphonglkbq
  • ๖ۣۜPXM๖ۣۜMinh4212♓
  • huyhieu10.11.1999
  • phungduyen1403
  • lalinky.ltml1212
  • trananhvan12315
  • linh31485
  • thananh133
  • Confusion
  • Hàn Thiên Dii
  • •♥•.¸¸.•♥•Furin•♥•.¸¸.•♥•
  • dinhtuyetanh000
  • LeQuynh
  • tuanmotrach
  • bac1024578
  • truonglinhyentrung
  • Lê Giang
  • Levanbin147896325
  • anhquynhthivu
  • thuphuong30012003