Phương pháp: Hằng số vắng

Tính các giới hạn:
1, $\mathop {\lim }\limits_{x \to 0}$$\frac{2\sqrt{1+x} - \sqrt[3]{8-x}}{x}$                              

2,$\mathop {\lim }\limits_{x \to 1}$$\frac{\sqrt[4]{2x-1} + \sqrt[5]{x-2}}{x-1}$                   

3,$\mathop {\lim }\limits_{x \to 1}$$\frac{2\sqrt{5-x^{3}}-\sqrt[3]{x^2 +7}}{x^2 -1}$                           

4, $\mathop {\lim }\limits_{x \to 0}$$\frac{(x^2+2009)\sqrt[7]{1-2x}-2009}{x}$


5,$\mathop {\lim }\limits_{x \to 7}$$\frac{\sqrt{x+2}-\sqrt[3]{x+20}}{\sqrt[4]{x+9}-2}$                              

6, $\mathop {\lim }\limits_{x \to 1}$$\frac{\sqrt{2x-1}+x^2-3x+1}{\sqrt[3]{x-2}+x^2-x+1}$

6.
     $\mathop {\lim }\limits_{x \to 1} \dfrac{\sqrt{2x-1}+x^2-3x+1}{\sqrt[3]{x-2}+x^2-x+1}$
$=\mathop {\lim }\limits_{x \to 1} \dfrac{(\sqrt{2x-1}-1)+x^2-3x+2}{(1-\sqrt[3]{2-x})+x^2-x}$
$=\mathop {\lim }\limits_{x \to 1} \dfrac{\dfrac{2x-2}{\sqrt{2x-1}+1}+(x-1)(x-2)}{\dfrac{x-1}{1+\sqrt[3]{2-x}+\sqrt[3]{(2-x)^2}}+x(x-1)}$
$=\mathop {\lim }\limits_{x \to 1} \dfrac{\dfrac{2}{\sqrt{2x-1}+1}+x-2}{\dfrac{1}{1+\sqrt[3]{2-x}+\sqrt[3]{(2-x)^2}}+x}=0$
Nếu thấy lời giải đúng thì bạn vui lòng đánh dấu vào hình chữ V dưới phần vote để xác nhận nhá. Thanks! –  khangnguyenthanh 07-02-13 09:34 AM
5.
     $\mathop {\lim }\limits_{x \to 7}\dfrac{\sqrt{x+2}-\sqrt[3]{x+20}}{\sqrt[4]{x+9}-2}$
$=\mathop {\lim }\limits_{x \to 7}\dfrac{(\sqrt{x+2}-3)-(\sqrt[3]{x+20}-3)}{\sqrt[4]{x+9}-2}$
$=\mathop {\lim }\limits_{x \to 7}\dfrac{\dfrac{x-7}{\sqrt{x+2}+3}-\dfrac{x-7}{\sqrt[3]{(x+20)^2}+3\sqrt{x+20}+9}}{\dfrac{x-7}{\sqrt[4]{(x+9)^3}+2\sqrt[4]{(x+9)^2}+4\sqrt[4]{x+9}+8}}$
$=\mathop {\lim }\limits_{x \to 7}\dfrac{\dfrac{1}{\sqrt{x+2}+3}-\dfrac{1}{\sqrt[3]{(x+20)^2}+3\sqrt{x+20}+9}}{\dfrac{1}{\sqrt[4]{(x+9)^3}+2\sqrt[4]{(x+9)^2}+4\sqrt[4]{x+9}+8}}=\dfrac{112}{27}$
Nếu thấy lời giải đúng thì bạn vui lòng đánh dấu vào hình chữ V dưới phần vote để xác nhận nhá. Thanks! –  khangnguyenthanh 07-02-13 09:32 AM
4.
     $\mathop {\lim }\limits_{x \to 0}\dfrac{(x^2+2009)\sqrt[7]{1-2x}-2009}{x}$
$=\mathop {\lim }\limits_{x \to 0}\dfrac{x^2\sqrt[7]{1-2x}+2009(\sqrt[7]{1-2x}-1)}{x}$
$=\mathop {\lim }\limits_{x \to 0}\dfrac{x^2\sqrt[7]{1-2x}+\dfrac{-2009.2x}{\sqrt[7]{(1-2x)^6}+\sqrt[7]{(1-2x)^5}+\sqrt[7]{(1-2x)^4}+\sqrt[7]{(1-2x)^3}+\sqrt[7]{(1-2x)^2}+\sqrt[7]{1-2x}+1}}{x}$
$=\mathop {\lim }\limits_{x \to 0}\left(x\sqrt[7]{1-2x}-\dfrac{2009.2}{\sqrt[7]{(1-2x)^6}+\sqrt[7]{(1-2x)^5}+\sqrt[7]{(1-2x)^4}+\sqrt[7]{(1-2x)^3}+\sqrt[7]{(1-2x)^2}+\sqrt[7]{1-2x}+1}\right)=-574$
Nếu thấy lời giải đúng thì bạn vui lòng đánh dấu vào hình chữ V dưới phần vote để xác nhận nhá. Thanks! –  khangnguyenthanh 07-02-13 09:32 AM
3.
$\mathop {\lim }\limits_{x \to 1^+}\dfrac{2\sqrt{5-x^3}-\sqrt[3]{x^2+7}}{x^2-1}=+\infty$
$\mathop {\lim }\limits_{x \to 1^-}\dfrac{2\sqrt{5-x^3}-\sqrt[3]{x^2+7}}{x^2-1}=-\infty$
$\Rightarrow \mathop {\lim }\limits_{x \to 1}\dfrac{2\sqrt{5-x^3}-\sqrt[3]{x^2+7}}{x^2-1}$ không tồn tại.
Nếu thấy lời giải đúng thì bạn vui lòng đánh dấu vào hình chữ V dưới phần vote để xác nhận nhá. Thanks! –  khangnguyenthanh 07-02-13 09:31 AM
2.
     $\mathop {\lim }\limits_{x \to 1}\dfrac{\sqrt[4]{2x-1}+\sqrt[5]{x-2}}{x-1}$
$=\mathop {\lim }\limits_{x \to 1}\dfrac{(\sqrt[4]{2x-1}-1)+(1-\sqrt[5]{2-x})}{x-1}$
$=\mathop {\lim }\limits_{x \to 1}\dfrac{\dfrac{2x-2}{\sqrt[4]{(2x-1)^3}+\sqrt[4]{(2x-1)^2}+\sqrt[4]{2x-1}+1}+\dfrac{x-1}{\sqrt[5]{(2-x)^4}+\sqrt[5]{(2-x)^3}+\sqrt[5]{(2-x)^2}+\sqrt[5]{2-x}+1}}{x-1}$
$=\mathop {\lim }\limits_{x \to 1}\left(\dfrac{2}{\sqrt[4]{(2x-1)^3}+\sqrt[4]{(2x-1)^2}+\sqrt[4]{2x-1}+1}+\dfrac{1}{\sqrt[5]{(2-x)^4}+\sqrt[5]{(2-x)^3}+\sqrt[5]{(2-x)^2}+\sqrt[5]{2-x}+1}\right)=\dfrac{7}{10}$
Nếu thấy lời giải đúng thì bạn vui lòng đánh dấu vào hình chữ V dưới phần vote để xác nhận nhá. Thanks! –  khangnguyenthanh 07-02-13 09:30 AM
1.
     $\mathop {\lim }\limits_{x \to 0}\dfrac{2\sqrt{1+x}-\sqrt[3]{8-x}}{x}$
$=\mathop {\lim }\limits_{x \to 0}\dfrac{2(\sqrt{1+x}-1)-(\sqrt[3]{8-x}-2)}{x}$
$=\mathop {\lim }\limits_{x \to 0}\dfrac{\dfrac{2x}{\sqrt{1+x}+1}-\dfrac{-x}{\sqrt[3]{(8-x)^2}+2\sqrt{8-x}+4}}{x}$
$=\mathop {\lim }\limits_{x \to 0}\left(\dfrac{2}{\sqrt{1+x}+1}+\dfrac{1}{\sqrt[3]{(8-x)^2}+2\sqrt{8-x}+4}\right)=\dfrac{13}{12}$
Nếu thấy lời giải đúng thì bạn vui lòng đánh dấu vào hình chữ V dưới phần vote để xác nhận nhá. Thanks! –  khangnguyenthanh 07-02-13 09:29 AM

Bạn cần đăng nhập để có thể gửi đáp án

Chat chit và chém gió
  • Việt EL: ... 8/21/2017 8:20:01 AM
  • Việt EL: ... 8/21/2017 8:20:03 AM
  • wolf linhvân: 222 9/17/2017 7:22:51 AM
  • dominhdai2k2: u 9/21/2017 7:31:33 AM
  • arima sama: helllo m 10/8/2017 6:49:28 AM
  • ๖ۣۜGemღ: Mọi người có thắc mắc hay cần hỗ trợ gì thì gửi tại đây nhé https://goo.gl/dCdkAc 12/6/2017 8:53:25 PM
  • anhkind: hi mọi người mk là thành viên mới nè 12/28/2017 10:46:02 AM
  • anhkind: party 12/28/2017 10:46:28 AM
  • Rushia: . 2/27/2018 2:09:24 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:31 PM
  • Rushia: .. 2/27/2018 2:09:31 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:34 PM
  • ๖ۣۜBossღ: c 3/2/2018 9:20:18 PM
  • nguoidensau2k2: hello 4/21/2018 7:46:14 PM
  • ☼SunShine❤️: Vẫn vậy <3 7/31/2018 8:38:39 AM
  • ☼SunShine❤️: Bên này text chữ vẫn đẹp nhất <3 7/31/2018 8:38:52 AM
  • ☼SunShine❤️: @@ lại càng đẹp <3 7/31/2018 8:38:59 AM
  • ☼SunShine❤️: Hạnh phúc thế sad mấy câu hỏi vớ vẩn hồi trẩu vẫn hơn 1k xem 7/31/2018 8:41:00 AM
  • tuyencr123: vdfvvd 3/6/2019 9:30:53 PM
  • tuyencr123: dv 3/6/2019 9:30:53 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: dv 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: đ 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:01 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:05 PM
  • tuyencr123: đ 3/6/2019 9:31:05 PM
  • tuyencr123: bb 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:07 PM
  • tuyencr123: b 3/6/2019 9:31:38 PM
  • Tríp Bô Hắc: cho hỏi lúc đăng câu hỏi em có thấy dòng cuối là tabs vậy ghi gì vào tabs vậy ạ 7/15/2019 7:36:37 PM
  • khanhhuyen2492006: hi 3/19/2020 7:33:03 PM
  • ngoduchien36: hdbnwsbdniqwjagvb 11/17/2020 2:36:40 PM
  • tongthiminhhangbg: hello 6/13/2021 2:22:13 PM
Đăng nhập để chém gió cùng mọi người
  • hoàng anh thọ
  • Thu Hằng
  • Xusint
  • HọcTạiNhà
  • lilluv6969
  • ductoan933
  • Tiến Thực
  • my96thaibinh
  • 01668256114abc
  • Love_Chishikitori
  • meocon_loveky
  • gaprodianguc95
  • smallhouse253
  • hangnguyen.hn95.hn
  • nguyencongtrung9744
  • tart
  • kto138
  • dphonglkbq
  • ๖ۣۜPXM๖ۣۜMinh4212♓
  • huyhieu10.11.1999
  • phungduyen1403
  • lalinky.ltml1212
  • trananhvan12315
  • linh31485
  • thananh133
  • Confusion
  • Hàn Thiên Dii
  • •♥•.¸¸.•♥•Furin•♥•.¸¸.•♥•
  • dinhtuyetanh000
  • LeQuynh
  • tuanmotrach
  • bac1024578
  • truonglinhyentrung
  • Lê Giang
  • Levanbin147896325
  • anhquynhthivu
  • thuphuong30012003