|
Ta có:→a⋅→b=xaxb+yayb và |→a⋅→b|=|→a||→b|cos(→a;→b) Lại có: (→a×→b)2+(→a⋅→b)2 =(xayb−xbya)2+(xaxb+yayb)2 =x2ay2b+x2by2a+x2ax2b+y2ay2b =(x2a+y2a)(x2b+y2b) =|→a|2|→b|2 Suy ra: |→a×→b|2=|→a|2|→b|2sin2(→a;→b) ⇒|→a×→b|=|→a||→b|sin(→a;→b), do sin(→a;→b)≥0.
|