|
1) Từ điều kiện của đẳng thức suy ra $\cos A , \cos B, \cos C >0.$ Ta có: $\cos A+\cos B=2\cos(\dfrac{A}{2}+\dfrac{B}{2})\cos(\dfrac{A}{2}-\dfrac{B}{2})\le2\cos(\dfrac{A}{2}+\dfrac{B}{2})$ $\cos
C+\cos\dfrac{\pi}{3}=2\cos(\dfrac{C}{2}+\dfrac{\pi}{6})\cos(\dfrac{C}{2}-\dfrac{\pi}{6})\le2\cos(\dfrac{C}{2}+\dfrac{\pi}{6})$ $\cos(\dfrac{A}{2}+\dfrac{B}{2})+\cos(\dfrac{C}{2}+\dfrac{\pi}{6})=2\cos\dfrac{\pi}{3}\cos(\dfrac{A}{4}+\dfrac{B}{4}-\dfrac{C}{4}-\dfrac{\pi}{12})\le2\cos\dfrac{\pi}{3}$ Suy ra: $\cos A+\cos B+\cos C\le3\cos\dfrac{\pi}{3}=\dfrac{3}{2}$ và $\cos A\cos B\cos C \le \left ( \dfrac{\cos A+\cos B+\cos C}{3} \right )^3\le\dfrac{1}{8}$ Điều này chứng tỏ $\triangle ABC$ đều.
|