|
Solution 2:
Applying the AM-GM inequality, we have, (1+32x2)+(1+32x2)+1≥33√(1+32x2)2 or 1+x2≥3√(1+32x2)2 or √(1+x2)3≥1+32x2(1) On the other hand, x4+2x4+x2+12x2≥44√x12=4x3 or 3x4+32x2≥4x3(2) From (1) and (2), we get: 3x4−4x3≥1−√(1+x2)3 Equality holds iff x=0
|