|
Ta có: cosA+cosB=2cos(A2+B2)cos(A2−B2)≤2cos(A2+B2) cosC+cosπ3=2cos(C2+π6)cos(C2−π6)≤2cos(C2+π6) cos(A2+B2)+cos(C2+π6)=2cosπ3cos(A4+B4−C4−π12)≤2cosπ3 Suy ra: cosA+cosB+cosC≤3cosπ3=32 và cosAcosBcosC≤(cosA+cosB+cosC3)3≤18 Ta có: (1+1cosA)(1+1cosB)(1+1cosC) =1+(1cosA+1cosB+1cosC)+(1cosAcosB+1cosBcosC+1cosCcosA)+1cosAcosBcosC ≥1+33√cosAcosBcosC+33√cos2Acos2Bcos2C+8≥27 Dấu bằng xảy ra khi: ΔABC đều.
|