|
Cách khác Chú ý rằng ta có sinC=sin(A+B)=sinAcosB+sinBcosA. Ta có sin2A+sin2B+sin2C>2 ⇔sin2C>(1−sin2A)+(1−sin2B) ⇔sin2(A+B)>cos2A+cos2B ⇔(sinAcosB+sinBcosA)2>cos2A+cos2B ⇔sin2Acos2B+sin2Bcos2A+2sinAcosBsinBcosA>cos2A+cos2B ⇔2sinAcosBsinBcosA>cos2A(1−sin2B)+cos2B(1−sin2A) ⇔2sinAcosBsinBcosA>cos2Acos2B+cos2Bcos2A ⇔2sinAcosBsinBcosA>2cos2Acos2B ⇔cosBcosA(cosBcosA−sinBsinA)<0 ⇔cosBcosAcos(A+B)<0 ⇔cosBcosAcosC>0 ⇔△ABC nhọn.
|