|
e. Ta có: sinA2+sinB2=2sin(A4+B4)cos(A4−B4)≤2sin(A4+B4) sinC2+sinπ6=2sin(C4+π12)cos(C4−π12)≤2sin(C4+π12) sin(A4+B4)+sin(C4+π12)=2sinπ6cos(A8+B8−C8−π24)≤2sinπ6 Suy ra: sinA2+sinB2+sinC2≤3sinπ6=32 Suy ra: sinA2sinB2sinC2≤(sinA2+sinB2+sinC23)3≤18 Ta có:
(1+1sinA2)(1+1sinB2)(1+1sinC2) =1+(1sinA2+1sinB2+1sinC2)+(1sinA2sinB2+1sinB2sinC2+1sinC2sinA2)+1sinA2sinB2sinC2 ≥1+33√sinA2sinB2sinC2+33√sin2A2sin2B2sin2C2+8≥27 Dấu bằng xảy ra khi: ΔABC đều.
|