Cho $\Delta ABC.$ Chứng minh rằng:
$a)\,\,\left(1-\cos A\right)\left(1-\cos B\right)\left(1-\cos C\right)\leq \dfrac{1}{8}\\b)\,\,\left(1-\sin A\right)\left(1-\sin B\right)\left(1-\sin C\right)\leq \left(1-\dfrac{\sqrt{3}}{2}\right)^{3}\\c)\,\,\dfrac{\cos\dfrac{A}{2}}{1+\cos A}+\dfrac{\cos\dfrac{B}{2}}{1+\cos B}+\dfrac{\cos\dfrac{C}{2}}{1+\cos C}\geq \sqrt{3}\\d)\,\,\dfrac{\cos\dfrac{B-C}{2}}{\sin\dfrac{A}{2}}+\dfrac{\cos\dfrac{C-A}{2}}{\sin\dfrac{B}{2}}+\dfrac{\cos\dfrac{A-B}{2}}{\sin\dfrac{C}{2}}\geq 6\\e)\,\,\left(1+\dfrac{1}{\sin\dfrac{A}{2}}\right)\left(1+\dfrac{1}{\sin\dfrac{B}{2}}\right)\left(1+\dfrac{1}{\sin\dfrac{C}{2}}\right)\geq 27$


a.
Kí hiệu $\sum$ và $\prod$ thay cho tổng và tích của các biểu thức đầy đủ và đối xứng.
BĐT cần chứng minh
$\Leftrightarrow \prod (1-\cos A) \le \dfrac{1}{8}\Leftrightarrow \prod 2\sin^2\dfrac{A}{2} \le \dfrac{1}{8}\Leftrightarrow \prod \sin^2\dfrac{A}{2} \le \dfrac{1}{64}\Leftrightarrow \prod \sin\dfrac{A}{2} \le \dfrac{1}{8}$
Mặt khác xem chứng minh câu e thì ta có điều này như vậy suy ra đpcm.
Đẳng thức xảy ra khi và chỉ khi tam giác ABC đều.
Hãy ấn chữ V dưới đáp án để chấp nhận nếu như bạn thấy lời giải này chính xác, và nút mũi tên màu xanh để vote up nhé. Thanks! –  Trần Nhật Tân 24-01-13 09:57 PM
e.
Ta có:
$\sin\dfrac{A}{2}+\sin\dfrac{B}{2}=2\sin(\dfrac{A}{4}+\dfrac{B}{4})\cos(\dfrac{A}{4}-\dfrac{B}{4})\le2\sin(\dfrac{A}{4}+\dfrac{B}{4})$
$\sin\dfrac{C}{2}+\sin\dfrac{\pi}{6}=2\sin(\dfrac{C}{4}+\dfrac{\pi}{12})\cos(\dfrac{C}{4}-\dfrac{\pi}{12})\le2\sin(\dfrac{C}{4}+\dfrac{\pi}{12})$
$\sin(\dfrac{A}{4}+\dfrac{B}{4})+\sin(\dfrac{C}{4}+\dfrac{\pi}{12})=2\sin\dfrac{\pi}{6}\cos(\dfrac{A}{8}+\dfrac{B}{8}-\dfrac{C}{8}-\dfrac{\pi}{24})\le2\sin\dfrac{\pi}{6}$
Suy ra: $\sin\dfrac{A}{2}+\sin\dfrac{B}{2}+\sin\dfrac{C}{2}\le3\sin\dfrac{\pi}{6}=\dfrac{3}{2}$
Suy ra: $\sin\dfrac{A}{2}\sin\dfrac{B}{2}\sin\dfrac{C}{2}\le\left(\dfrac{\sin\dfrac{A}{2}+\sin\dfrac{B}{2}+\sin\dfrac{C}{2}}{3}\right)^3\le\dfrac{1}{8}$
Ta có:
     $\left(1+\dfrac{1}{\sin\dfrac{A}{2}}\right)\left(1+\dfrac{1}{\sin\dfrac{B}{2}}\right)\left(1+\dfrac{1}{\sin\dfrac{C}{2}}\right)$
$=1+\left(\dfrac{1}{\sin\dfrac{A}{2}}+\dfrac{1}{\sin\dfrac{B}{2}}+\dfrac{1}{\sin\dfrac{C}{2}}\right)+\left(\dfrac{1}{\sin\dfrac{A}{2}\sin\dfrac{B}{2}}+\dfrac{1}{\sin\dfrac{B}{2}\sin\dfrac{C}{2}}+\dfrac{1}{\sin\dfrac{C}{2}\sin\dfrac{A}{2}}\right)+\dfrac{1}{\sin\dfrac{A}{2}\sin\dfrac{B}{2}\sin\dfrac{C}{2}}$
$\ge1+\dfrac{3}{\sqrt[3]{\sin\dfrac{A}{2}\sin\dfrac{B}{2}\sin\dfrac{C}{2}}}+\dfrac{3}{\sqrt[3]{\sin^2\dfrac{A}{2}\sin^2\dfrac{B}{2}\sin^2\dfrac{C}{2}}}+8\ge27$
Dấu bằng xảy ra khi: $\Delta ABC$ đều.
d.
Ta có:
     $\dfrac{\cos\dfrac{B-C}{2}}{\sin\dfrac{A}{2}}+\dfrac{\cos\dfrac{C-A}{2}}{\sin\dfrac{B}{2}}+\dfrac{\cos\dfrac{A-B}{2}}{\sin\dfrac{C}{2}}$
$=\dfrac{2\sin\dfrac{B+C}{2}\cos\dfrac{B-C}{2}}{2\sin\dfrac{A}{2}\cos\dfrac{A}{2}}+\dfrac{2\sin\dfrac{C+A}{2}\cos\dfrac{C-A}{2}}{2\sin\dfrac{B}{2}\cos\dfrac{B}{2}}+\dfrac{2\sin\dfrac{A+B}{2}\cos\dfrac{A-B}{2}}{2\sin\dfrac{C}{2}\cos\dfrac{C}{2}}$
$=\dfrac{\sin B+\sin C}{\sin A}+\dfrac{\sin C+\sin A}{\sin B}+\dfrac{\sin A+\sin B}{\sin C}$
$=\dfrac{\sin B}{\sin A}+\dfrac{\sin A}{\sin B}+\dfrac{\sin C}{\sin B}+\dfrac{\sin B}{\sin C}+\dfrac{\sin C}{\sin A}+\dfrac{\sin A}{\sin C}$
$\ge2\sqrt{\dfrac{\sin B}{\sin A}.\dfrac{\sin A}{\sin B}}+2\sqrt{\dfrac{\sin C}{\sin B}.\dfrac{\sin B}{\sin C}}+2\sqrt{\dfrac{\sin C}{\sin A}.\dfrac{\sin A}{\sin C}}=6$
 Dấu bằng xảy ra khi: $\Delta ABC$ đều.
c.
Ta có:
$\cos\dfrac{A}{2}+\cos\dfrac{B}{2}=2\cos(\dfrac{A}{4}+\dfrac{B}{4})\cos(\dfrac{A}{4}-\dfrac{B}{4})\le2\cos(\dfrac{A}{4}+\dfrac{B}{4})$
$\cos\dfrac{C}{2}+\cos\dfrac{\pi}{6}=2\cos(\dfrac{C}{4}+\dfrac{\pi}{12})\cos(\dfrac{C}{4}-\dfrac{\pi}{12})\le2\cos(\dfrac{C}{4}+\dfrac{\pi}{12})$
$\cos(\dfrac{A}{4}+\dfrac{B}{4})+\cos(\dfrac{C}{4}+\dfrac{\pi}{12})=2\cos\dfrac{\pi}{6}\cos(\dfrac{A}{8}+\dfrac{B}{8}-\dfrac{C}{8}-\dfrac{\pi}{24})\le2\cos\dfrac{\pi}{6}$
Suy ra: $\cos\dfrac{A}{2}+\cos\dfrac{B}{2}+\cos\dfrac{C}{2}\le3\cos\dfrac{\pi}{6}=\dfrac{3\sqrt3}{2}$
Ta có:
     $\dfrac{\cos\dfrac{A}{2}}{1+\cos A}+\dfrac{\cos\dfrac{B}{2}}{1+\cos B}+\dfrac{\cos\dfrac{C}{2}}{1+\cos C}$
$=\dfrac{1}{2\cos\dfrac{A}{2}}+\dfrac{1}{2\cos\dfrac{B}{2}}+\dfrac{1}{2\cos\dfrac{C}{2}}$
$\ge\dfrac{9}{2\cos\dfrac{A}{2}+2\cos\dfrac{B}{2}+2\cos\dfrac{C}{2}}\ge\sqrt3$
Dấu bằng xảy ra khi: $\Delta ABC$ đều.

Bạn cần đăng nhập để có thể gửi đáp án

Chat chit và chém gió
  • Việt EL: ... 8/21/2017 8:20:01 AM
  • Việt EL: ... 8/21/2017 8:20:03 AM
  • wolf linhvân: 222 9/17/2017 7:22:51 AM
  • dominhdai2k2: u 9/21/2017 7:31:33 AM
  • arima sama: helllo m 10/8/2017 6:49:28 AM
  • ๖ۣۜGemღ: Mọi người có thắc mắc hay cần hỗ trợ gì thì gửi tại đây nhé https://goo.gl/dCdkAc 12/6/2017 8:53:25 PM
  • anhkind: hi mọi người mk là thành viên mới nè 12/28/2017 10:46:02 AM
  • anhkind: party 12/28/2017 10:46:28 AM
  • Rushia: . 2/27/2018 2:09:24 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:31 PM
  • Rushia: .. 2/27/2018 2:09:31 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:34 PM
  • ๖ۣۜBossღ: c 3/2/2018 9:20:18 PM
  • nguoidensau2k2: hello 4/21/2018 7:46:14 PM
  • ☼SunShine❤️: Vẫn vậy <3 7/31/2018 8:38:39 AM
  • ☼SunShine❤️: Bên này text chữ vẫn đẹp nhất <3 7/31/2018 8:38:52 AM
  • ☼SunShine❤️: @@ lại càng đẹp <3 7/31/2018 8:38:59 AM
  • ☼SunShine❤️: Hạnh phúc thế sad mấy câu hỏi vớ vẩn hồi trẩu vẫn hơn 1k xem 7/31/2018 8:41:00 AM
  • tuyencr123: vdfvvd 3/6/2019 9:30:53 PM
  • tuyencr123: dv 3/6/2019 9:30:53 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: dv 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: đ 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:01 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:05 PM
  • tuyencr123: đ 3/6/2019 9:31:05 PM
  • tuyencr123: bb 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:07 PM
  • tuyencr123: b 3/6/2019 9:31:38 PM
  • Tríp Bô Hắc: cho hỏi lúc đăng câu hỏi em có thấy dòng cuối là tabs vậy ghi gì vào tabs vậy ạ 7/15/2019 7:36:37 PM
  • khanhhuyen2492006: hi 3/19/2020 7:33:03 PM
  • ngoduchien36: hdbnwsbdniqwjagvb 11/17/2020 2:36:40 PM
  • tongthiminhhangbg: hello 6/13/2021 2:22:13 PM
Đăng nhập để chém gió cùng mọi người
  • hoàng anh thọ
  • Thu Hằng
  • Xusint
  • HọcTạiNhà
  • lilluv6969
  • ductoan933
  • Tiến Thực
  • my96thaibinh
  • 01668256114abc
  • Love_Chishikitori
  • meocon_loveky
  • gaprodianguc95
  • smallhouse253
  • hangnguyen.hn95.hn
  • nguyencongtrung9744
  • tart
  • kto138
  • dphonglkbq
  • ๖ۣۜPXM๖ۣۜMinh4212♓
  • huyhieu10.11.1999
  • phungduyen1403
  • lalinky.ltml1212
  • trananhvan12315
  • linh31485
  • thananh133
  • Confusion
  • Hàn Thiên Dii
  • •♥•.¸¸.•♥•Furin•♥•.¸¸.•♥•
  • dinhtuyetanh000
  • LeQuynh
  • tuanmotrach
  • bac1024578
  • truonglinhyentrung
  • Lê Giang
  • Levanbin147896325
  • anhquynhthivu
  • thuphuong30012003