|
Nhắc lại không chứng minh kết quả sau ∫11−z2dz=12ln|1+z1−z|+C Ta có x2+1x√3x+1=x2x√3x+1+1x√3x+1 x2+1x√3x+1=x√3x+1+1x√3x+1 x2+1x√3x+1=(3x−2)+2(3x+1)9√3x+1−31−(3x+1).1√3x+1 x2+1x√3x+1=(3x−2)9√3x+1+2(3x+1)9√3x+1−11−(3x+1).3√3x+1 x2+1x√3x+1=227(3x−2)(√3x+1)′+227(3x−2)′(√3x+1)−2.11−(3x+1)(√3x+1)′ x2+1x√3x+1=[227(3x−2)(√3x+1)]′−2.11−(3x+1)(√3x+1)′ Suy ra 5∫1x2+1x√3x+1dx=[227(3x−2)(√3x+1)]51−25∫111−(3x+1)d(√3x+1) 5∫1x2+1x√3x+1dx=[227(3x−2)(√3x+1)]51−2[12ln|1+√3x+11−√3x+1|]51 5∫1x2+1x√3x+1dx=10027+ln95
|