|
PT ⇔(3√x−1+3√x+1)3=(x3√2)3 ⇔x−1+x+1+33√x−1.3√x+1(3√x−1+3√x+1⏟x3√2)=2x3 ⇔2x+33√x2−1.x3√2=2x3 ⇔2x+3x3√2x2−2=2x3 ⇔[x=02+33√2x2−2=2x2 ⇔[x=033√2x2−2=2x2−2 ⇔[x=03(2x2−2)=(2x2−2)3 ⇔[x=02x2−2=03=(2x2−2)2 ⇔[x=0x=±1±√3=2x2−2 ⇔[x=0x=±12x2=2±√3 ⇔[x=0x=±1x=±√2±√32
|