|
Ta có $U_n = \dfrac{2}{(n+1)(n+3)}=\dfrac{1}{n+1}-\dfrac{1}{n+3} \quad \forall n$ do đó $U_1 =\dfrac{1}{2}-\dfrac{1}{4}$ $U_2 =\dfrac{1}{3}-\dfrac{1}{5}$ $U_3 =\dfrac{1}{4}-\dfrac{1}{6}$ $\cdots$ $U_{n-1} =\dfrac{1}{n}-\dfrac{1}{n+2}$ $U_{n} =\dfrac{1}{n+1}-\dfrac{1}{n+3}$ Cộng theo từng vế các đẳng thức này ta được $S_{n} = u_{1} + u_{2} + ... + u_{n-1} + u_{n}=\left (\dfrac{1}{2}+\dfrac{1}{3}+\ldots+\dfrac{1}{n+1} \right )-\left (\dfrac{1}{4}+\dfrac{1}{5}+\ldots+\dfrac{1}{n+3} \right )$ $S_n=\left (\dfrac{1}{2}+\dfrac{1}{3} \right )-\left (\dfrac{1}{n+2}+\dfrac{1}{n+3} \right )=\dfrac{n (13+5 n)}{6 (2+n) (3+n)}$
|