|
Điều kiện $x \ge 1$ hoặc $x=-1.$ PT $\Leftrightarrow \sqrt{2(x+1)(x+3)}+\sqrt{x^2-1}=2x+2$ $\Leftrightarrow ( \sqrt{2(x+1)(x+3)}+\sqrt{x^2-1})^2=(2x+2)^2$ $\Leftrightarrow 3x^2+8x+5+2\sqrt{2(x+1)(x+3)}.\sqrt{x^2-1}=4x^2+8x+4$ $\Leftrightarrow 2\sqrt{2(x+1)(x+3)}.\sqrt{x^2-1}=x^2-1$ $\Leftrightarrow 8(x+1)(x+3)(x^2-1)=(x^2-1)^2$ $\Leftrightarrow \left[ {\begin{matrix} x^2-1=0\\ x+1=0\\8(x+3)=x-1 \end{matrix}} \right.$ $\Leftrightarrow \left[ {\begin{matrix} x=1\\ x=-1\\x=-25/7 \text{(loại)} \end{matrix}} \right.$
|