|
Ta có arctanxx2=−xx2+1+1x−xx2+1−arctanxx2 arctanxx2=(−12ln(x2+1))′+(lnx)′−(arctanxx)′ arctanxx2=(lnx√x2+1)′−(arctanxx)′ Suy ra +∞∫1arctanxx2dx=[lnx√x2+1−arctanxx]+∞1=π+ln44 Chú ý rằng lim \lim_{x \to +\infty}\dfrac{\arctan x}{x} \underbrace{=}_{L'Hospital}\lim_{x \to +\infty}\dfrac{(\arctan x)'}{(x)'}=\lim_{x \to +\infty}\dfrac{\dfrac{1}{x^2+1}}{1} =0
|