|
$\int\limits_{\sqrt{2}}^{+\infty }\dfrac{x dx}{(x^2+1)^3}=\dfrac{
1}{2}\int\limits_{\sqrt{2}}^{+\infty }\dfrac{ d(x^2+1)}{(x^2+1)^3}=\left[ {-\dfrac{
1}{4}\dfrac{1}{(x^2+1)^2}} \right]_{\sqrt{2}}^{+\infty }=\dfrac{1}{36}$ Chú ý rằng $\lim_{x \to +\infty}\dfrac{1}{(x^2+1)^2}=0$
|