|
$I=\int\limits_{-\infty }^{+\infty }\dfrac{dx}{x^2+4x+9}=\int\limits_{-\infty }^{+\infty }\dfrac{d(x+2)}{(x+2)^2+5}=\left[ {\dfrac{1}{\sqrt 5}\arctan\dfrac{x+2}{\sqrt 5}} \right]_{-\infty }^{+\infty }=\dfrac{\pi}{\sqrt 5}$ Trong đó đã sử dụng $\arctan(+\infty)=\dfrac{\pi}{2},\arctan(-\infty)=\dfrac{-\pi}{2}$
|