|
Ta có $\dfrac{1}{(x^2+1)^2}=\dfrac{1}{2}.\dfrac{1-x^2}{(x^2+1)^2}+\dfrac{1}{2}.\dfrac{1}{x^2+1}$ $\dfrac{1}{(x^2+1)^2}=\dfrac{1}{2}.\left (\dfrac{x}{x^2+1} \right )'+\dfrac{1}{2}.\left ( \arctan x \right )'$ Suy ra $\int\limits_{0}^{\infty }\dfrac{dx}{(x^2+1)^2}=\dfrac{1}{2}\left[ {\dfrac{x}{x^2+1}+\arctan x} \right]_{0}^{\infty }=\dfrac{\pi}{4}$
|