|
b. Ta có: $I=\int\frac{dx}{2-\cos^2x}=\int\frac{dx}{2\sin^2x+\cos^2x}=\int\frac{d(\tan x)}{2\tan^2x+1}$ Đặt $\sqrt2\tan x=t$ Ta có: $I=\frac{1}{\sqrt2}\int\frac{dt}{t^2+1}$ Đặt $t=\tan z\Rightarrow dt=(\tan^2z+1)dz$ Suy ra: $I=\frac{1}{\sqrt2}\int\frac{(\tan^2z+1)dz}{\tan^2z+1}$ $=\frac{1}{\sqrt2}\int dz$ $=\frac{z}{\sqrt2}+C$ $=\frac{\arctan t}{\sqrt2}+C$ $=\frac{\arctan(\sqrt2\tan x)}{\sqrt2}+C$
|