|
a. Ta có: $\int\limits_0^{\pi/2}\frac{\cos xdx}{7-5\sin x-\cos^2x}$ $=\int\limits_0^{\pi/2}\frac{d(\sin x)}{6-5\sin x+\sin^2x}$ $=\int\limits_0^1\frac{dt}{t^2-5t+6}$ $=\int\limits_0^1(\frac{1}{2-t}-\frac1{3-t})dt$ $=\ln\frac{3-t}{2-t}\left|\begin{array}{l}1\\0\end{array}\right.=\ln2-\ln\frac{3}{2}=\ln\frac{4}{3}$
|