|
Ta có BĐT sau: $\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\ge\sqrt{(a+c)^2+(b+d)^2}$ Dấu bằng xảy ra khi: $ad=bc$
Áp dụng BĐT trên ta có: $y=\sqrt{(\frac{1}{2}-x)^2+(\frac{\sqrt3}{2})^2}+\sqrt{(x+\frac{1}{2})^2+(\frac{\sqrt3}{2})^2}$ $\ge\sqrt{(\frac{1}{2}-x+x+\frac{1}{2})^2+(\frac{\sqrt3}{2}+\frac{\sqrt3}{2})^2}=2$ Min$y=2\Leftrightarrow \frac{\sqrt3}{2}(\frac{1}{2}-x)=\frac{\sqrt3}{2}(x+\frac{1}{2})\Leftrightarrow x=0$
|